
NORTHWEST NAZARENE UNIVERSITY

Manuscript and Comment Creation and Viewer Software Development Project

THESIS

Submitted to the Department of Mathematics and Computer Science

in partial fulfillment of the requirements

for the degree of

BACHELOR OF SCIENCE

By

Matthew Amberg

2023

THESIS

Submitted to the Department of Mathematics and Computer Science

in partial fulfillment of the requirements

for the degree of

BACHELOR OF SCIENCE

By

Matthew Amberg

2023

Manuscript and Comment Creation and Viewer Software Development Project

Author: __
Matthew Amberg

Approved: __
Kevin McCarty, Ph.D, Department of Mathematics and Computer Science,
Faculty Advisor

Approved: __
Julia Ganske, Ph.D., Department of Music, Second Reader

Approved: __
Barry L. Myers, Ph.D., Chair, Department of Mathematics & Computer
Science

Abstract

Employing Full Stack Development to Create a Viewer for Manuscripts and
Commenting Systems.
AMBERG, MATTHEW(Department of Mathematics and Computer Science), MYERS,
DR. BARRY (Department of Mathematics and Computer Science), MCCARTY, DR.
KEVIN (Department of Mathematics and Computer Science).

The overarching goal that passes the scope of this project is to offer a site for writers to
upload their manuscripts and to receive criticisms as well as offer criticisms to others’
works. As the site was very early in the works, there was a need for a baseline system
for being able to store those documents, view them, as well as a robust system for being
able to create comments. A fullstack methodology was employed in the creation of this
system. Three-Tier Architecture is the structure of the application and React, Javascript,
and ASP.Net are the tools used.
The main goals within the scope of this project are to allow a user to highlight and
visually see what they selected and enter a comment. Additionally, the goals included
the capacity to select pre-existing comments, being able to read the comment left, as
well as reading and entering additional sub comments to a head comment. The project
set a baseline for further development of the site with future work and projects.

iii

Table of Contents

Abstract iii
Table of Contents iv
Table of Figures iv
Introduction 1
Background 1
Implementation 2
Results 11
Future Work 12
References 13

Table of Figures

Figure 1. Three Tier Application Architecture 3
Figure 2. Five project layers in Three Tier Architecture 6
Figure 3. Uploading Documents through the Five layers 7
Figure 4. Screenshot of Manuscript Viewer, Comment Box, and Highlighted Text Examples 9

iv

Introduction

Writer’s Klatch is a website in the making that a portion of work was set aside for

this project. The website is intended to be a place for writers to store, share, and critique

each other’s stories with many tools to allow for ease of use and functionality. One such

functionality that was the goal of this project was the baseline viewer of manuscripts,

and the functionality to select text, add comments and view the comments.

Some sites offer this sort of functionality, such as Google Docs, but the tools in

regards to controlling viewability of comments, comments on different manuscript

versions and other specialized tools are not available in Google Docs. Google docs is a

more generic document storing and editing tool with its collaborative features. Some

tools that writers might be looking for such as versions of documents and more robust

commenting functionality are not readily available in Google docs.

Background

Some writers intend to write books and publish them. Others simply write as a

hobby and simply wish to share their works with others. Some tools that have allowed

for that are document storing and editing tools such as Google Docs. A problem with

sites like Google Docs is that those sites are more generic in design. They allow for

multiple sorts of uses of document editing, such as school assignments or journal

publication documents. There are other sites that are more specialized for sharing and

critiquing of manuscripts but they do not have as robust of a critiquing system as this

project’s final goal intends to have. The company Scrumfish has its site, Writer’s

1

Klatch, in the works and this project was scoped to adding said functionality to the

preexisting site.

Implementation

The project was developed using ASP.Net and React in a full stack environment.

This meant that development was done primarily in ‘Three Tier Architecture,’ which in

this project consists of 5 notable layers. Three tier architecture is an application

development standard meant to encapsulate data and information to control access to

said data and security of data being sent to and received from the site. There are three

tiers, as can be seen in figure 1. The top is the presentation tier, which contains the code

for things seen by the clients. This front-end code is usually in some form of HTML or

Javascript. The second is the Business Logic Tier. It handles the incoming and outgoing

data. This tier is what the presentation communicates with but is not inherently visible

to the clients, which ensures the security of the site's inner workings. Finally there is the

Data Management Tier. This lowest tier primarily handles the storage of data and is

responsible for returning data to the Business Logic Tier when requested and storing

what is sent to it from that tier.

2

Figure 1. Three Tier Application Architecture

While there are three primary tiers, this project was structured in five separate

layers that fit these given tiers as shown in figure 2.

The lowest layer was that of the backend database and data storage layer. This

layer primarily consisted of SQL database tables and Azure blob storage. This layer

functioned primarily as storage and was not directly altered at that layer itself outside of

their initial creations. This layer was altered and used by the next layer up, that being

the DAL (Data Access Layer). Within the DAL is a collection of entities with various

attributes. This collection of entities is what implicitly creates columns for the SQL

tables and updates them when a database migration is run. The functional code in the

DAL consists of files labeled with their appropriate data access ending in ‘Data,’ such

as the example of the file labeled ‘UserData.cs.’ The code in the DAL takes inputs that

have come down from the top layer down to the business layer, and adjusted for entry

to the data storage through instantiated entity objects. These two lowest layers comprise

the Data Management Tier.

3

The BIZ (Business) Layer is the layer that takes data from the upper layer and

manages it. An example of that being the code for registering a new user, the upper

layer simply passes down the input credentials. The BIZ layer is the one that hashes the

password before it is passed to the DAL for storage. Additionally, for the sake of

encapsulation, DAL’s have various coded functions, such as to check for duplicate user

emails as an example, but do not do said logic in the same function as the function

meant to upload the input adjusted data from the BIZ layer code that called that

function. The BIZ code uses the various DAL functions and has the logic to catch any

issues with the given code. The DAL functions as the tools to store the data.

(BIZ layer pseudo code)

Login Function (UserCredentials User)

If DAL.LoginUser(User.Email, User.Password.Hash(), User.MFACode)

Return Ok(UserModel {

Email = User.Email,

LastLogin = DateTime.now() }

Else

Return Unauthorized()

End Login Function

Both the BIZ and the DAL objects were created through interfaces and

instantiations of those interfaces. This was done to follow best practice and create

abstraction of the code. Such examples of abstraction were the creation of the

4

‘IManuscriptData’ object which was the interface for the actual ‘ManuscriptData’

object in the DAL. The interface simply had entries for each function, while the DAL

object had the code for each function. All BIZ objects and DAL objects are structured

in this manner.

The next layer, labeled as the ‘UI’ layer is the layer in which the api controllers

are located. The controllers are functions that the front end code calls and inputs raw

data into. The controllers receive the input from the frontend and instantiate a model

object to pass the data down to the BIZ layer for the BIZ to handle it and the logic for

it. There is some logic done on the Control layer, but for the most part the Control layer

formats the input data into a data model for the BIZ layer to further format and apply

logic to.

Additionally, while not a layer, there is a container of ‘objects’ that is referenced

in the BIZ and Control layers. Objects such as the ‘user’ or ‘comment’ objects, have

models for passing the data between the layers. One such example of this is the

‘UserModel’ which is a data structure that the Control instantiates to pass the input user

data (including password) to the BIZ for the login logic. This model is good for passing

the user data down, but there is no need to pass some extra credentials, such as the

user’s hashed password, back up when returning user data to the UI layer. As such,

there is another model named the ‘UserDisplayModel.’ This is similar to the

UserModel, but it does not have the extra attributes, such as the password, or other

sensitive information that was input initially for the login logic. This model is passed

back up by the BIZ to the Control for the Control to return to the UI layer, which then

displays the information in some format. The BIZ and the Control layers comprise the

5

Business Logic Tier. These two layers handle incoming data, formatting, and applying

the business logic to said data, as well as formatting and returning data sent up from the

Data Management Tier.

The top layer is the UI layer. This layer is done in Javascript with React and has a

lot of its own logic and subdivisions in the code files. This layer is the code for what is

actually presented on the screen, the logic for displaying user data, moving between

pages, and calling the Control layer functions. The Control layer functions are given

routes and http functionalities. Such as Http Get or Http Put. As such, the UI layer also

handles taking the user inputs and formatting them into a json structure and inputting

them into the http fetch calls to pass the data to the Control layer for it to format and

handle. The UI layer itself comprises the Presentation Tier.

Figure 2. Five project layers in Three Tier Architecture

The functionality to upload documents to the site and to store them was the first

major goal to be completed in this project. Figure 3 gives a top down layout of the code

structure. The code for this was started in the Control layer. A control was created with

the primary function intended for this first task. The primary function consisted of an

6

HTTPPost method, taking one parameter, an IFormFile, which is the byte stream and

other metadata of the uploaded document. This function passes the file data, the file

title, and the user ID to a BIZ object that handles manuscript information. The BIZ then

takes the header data and passes it to a DAL that is connected to a table for header data

of the manuscripts, storing data such as the user ID, the manuscript ID, and the creation

date. It also stores the version number as users are allowed to upload multiple versions

of the same manuscript for when they make changes. This BIZ also passes the file data

itself to another DAL. This DAL’s connection is to the blob storage, which stores the

files for the documents themselves. The DAL also applies IDs to each character for use

in the UI layer, and then saves each page individually to the blob storage. The UI layer

deals with accepting a file to upload and handles entering it through a fetch question for

the httpPost function.

Figure 3. Uploading Documents through the Five layers

The next task was creating a system for viewing the document and selecting text

to create comments. A screenshot of this is shown in figure 4. The viewer was created

in the javascript UI layer. The other layers all simply grab the data from the database

and blob storage and pass them up, formatting them into json objects which then the UI

7

layer can populate the page with. The webpage itself first loads up the first page of a

selected document. The url was ordered by the document title, the version, and the

current page number. The fetch functions with the httpGet were structured similarly. A

pagination library was used to alter the current page variable which was what was kept

in the url and sent through the fetch call. This meant the page would load a new page of

the document with each page change, rather than having the entire document all loaded

at once.

Due to the ID’ing of each character in the document, those IDs could be obtained

and compared to highlighted selections of text in the document. Doing so, the code

recorded the first and last ID of the selected text. A textbox was coded on the page to be

placed next to the document viewer. The comment box had a button that was disabled if

there was no selection. If the selection was valid and the textbox itself was not blank,

clicking the button activated another fetch function which inputs the comment text, the

manuscript ID, the user ID, and the first and last element IDs of the selected text.

Those are then passed through the layers down to a new DAL which stores the

comment in their own table. Additionally, if the selection includes an already existing

comment, the selection IDs are not passed and the parent comment ID is passed to the

Control. The parent comment ID is an optional parameter when input, which allows the

control to determine whether the received comment is a subcomment or a parent

comment. It then calls one of two BIZ functions to pass down the respective comment

or sub comment.

8

Figure 4. Screenshot of Manuscript Viewer, Comment Box, and Highlighted Text

Examples

The UI layer handles the fetch calls and each UI layer functions to load data

received from fetch calls in an ordered way. The Javascript page was separated into 3

primary components. There is the manuscript viewer, which is a div with the html inset

into it. The comment viewer, which is a div that is populated with the text from loaded

comments, and the comment box, which is an input box and a button which is used to

send comments to the database. Due to the asynchronous nature of the Javascript

variables, these components all were loaded in a specific order, as each component

loads more data which is contingent on the prior data being loaded. If they are not

loaded in order, null exceptions occur which would break the page.

9

When actually loading things onto the page in html style (not applying functional

logic to format data), there is some simple boolean logic that is done to control when

things are loaded. For the manuscript viewer, all the components, including the div for

viewing the document, the comment viewer, and the comment input box, are barred

from being loaded through a boolean statement. The boolean statement is as follows:

Manuscript Viewer Code

If HTML Document Byte stream not null

And If Comments have been pulled from the Application Tier

Load html and react components

Populate variables on page with input and loaded data

End Manuscript Viewer Code

The comment viewer is an empty list that can be populated with text. It loads the

stored comment of each highlighted existing comment on the page and presents it to the

user.

The comment input box is the other important component. As it is only

instantiated onto the page after the document itself is loaded, it then has functions in it

to determine the IDs of the ends of the loaded manuscript page and highlight existing

comments on the page within that range, as well as allowing for the user to type a

comment and create it by clicking the send button, which then sends the text for the

comment to the controller.

10

Results

The app prior to this project was a mostly base web application with minimal

functionality. After the completion of the project the site gained login functionality as

well as the functionality to upload multiple versions of manuscripts, view them, leave

comments on them, and view said comments and see what portions of the text were

highlighted where said comments were left.

The ease of use of the added functionality from the scope of this project are fairly

streamlined and straightforward. Selecting a portion of text to highlight is as easy as

highlighting it with a user’s mouse. Changing a selection is equally as easy as

highlighting a new or different portion of text.

As the documents are not intended to be edited by viewers, there is not a method

to step through each character with a cursor like in a document actively being typed in,

so viewing comments is done in a similar fashion as selecting comments to add text.

Simply highlighting any portion of a preexisting comment will load the text of the

comment into a comment viewer. Highlighting multiple existing comments will load all

of them into a table to view.

Finally, there was also code on most of the layers to ensure that any possible

overhead with the system is addressed. Users are unable to click the send button if they

have not selected any text in the manuscript or have not typed any non-white space

characters into the comment box. The presentation layer also will not attempt to call the

controller if a function is called with empty text or no selected text.

The method of uploading and viewing manuscripts is straightforward as well.

There is an upload dropbox that you can either drop a file into or click to find and

11

upload a file. It only accepts .docx files, so there cannot be any issues in attempting to

upload an improper file type. The dashboard page which has the upload dropbox also

has a list of all manuscripts for a user as well as the highest version number of each

manuscript. This gives a quick look at all the manuscripts a user has, how many

versions each manuscript has, and an easy way to traverse to the viewer for each

manuscript.

Future Work

The scope of the project was limited to the fundamental functionality of uploading

and viewing manuscripts, as well as leaving comments and viewing the comments, and

the functionality around highlighting and selecting text for commenting.

The main goals of the project were; a) create a viewer for documents, as well as

code the functionality to upload and view manuscripts, b) create functionality to

highlight text in a document in real time for selection, and c) code a method to send

comments for selected text, and be able to see what comments were created as well the

text selected where the comment was left, and the content of the comment. These goals

were all accomplished, but there is more work to be done. One such thing to be done is

the necessity to account for viewing manuscripts uploaded by other users. Currently the

lower layers of the code can account for users when grabbing documents to view, and

when uploading and leaving comments, but the Control layer does not have any

methodology currently for grabbing any other user ID than the one of the user currently

accessing the site. This means that currently a user can only see and access manuscripts

they uploaded themselves and therefore have their user ID attached to the manuscript in

12

the header data table. Due to the layered nature of the project, the only changes that

would need to be made would be at the UI layer to be able to pass other user IDs rather

than just the ID of the current client user.

Other future work that is required is the presentation aspect of the UI. The scope

of my project was primarily functionality over visual stylization. As such, all the data

being passed up from the Control layer to the UI layer is adequate and available for use,

but the way it is presented is fairly minimalistic and barebones. Cleaning up the UI

layer to create a more streamlined and visually sleek experience for the user is future

work for this project.

Additionally, the other aspects of the site, such as a means to browse uploaded

manuscripts by various users, user accounts and profiles, and more are all other large

tasks that are all future work that was outside the scope of this particular project.

13

References

Earthpledge Foundation. (n.d.). Three-tier architecture overview. Amazon. Retrieved

April 25, 2023, from

https://docs.aws.amazon.com/whitepapers/latest/serverless-multi-tier-architectures

-api-gateway-lambda/three-tier-architecture-overview.html

Forms. React. (n.d.). Retrieved April 25, 2023, from

https://legacy.reactjs.org/docs/forms.html

Rick-Anderson. (n.d.). Routing to controller actions in ASP.NET Core. Microsoft Learn.

Retrieved April 25, 2023, from

https://learn.microsoft.com/en-us/aspnet/core/mvc/controllers/routing?view=aspn

etcore-7.0

14

		Barry Myers <blmyers@nnu.edu>, Kevin McCarty <kmccarty@nnu.edu>, jganske@nnu.edu
	2023-04-29T15:23:20+0000
	Barry Myers: 43°33′31″N 116°34′55″W (6447.54 m), Kevin McCarty: 43°34′14″N 116°22′44″W (5825.78 m), jganske@nnu.edu: 43°37′9″N 116°29′53″W (141.0 m)
	Certify the signatures of Barry Myers <blmyers@nnu.edu>, Kevin McCarty <kmccarty@nnu.edu>, jganske@nnu.edu

