NORTHWEST NAZARENE UNIVERSITY

Detecting Stock Market Patterns via Standard Query Language Data Analytics.

THESIS
Submitted to the Department of Mathematics and Computer Science
in partial fulfillment of the requirements
for the degree of
BACHELOR OF ARTS COMPUTER SCIENCE

Braglyn Blessing Boerner
2021

THESIS
Submitted to the Department of Mathematics and Computer Science
in partial fulfillment of the requirements
for the degree of
BACHELOR OF ARTS COMPUTER SCIENCE

Braglyn Blessing Boerner
2021

Detecting Stock Market Patterns via Standard Query Language Data Analytics
Among a Stock Screener Application.

Author: M’*@“% Tooerman

Braelyn Blessing Boerner

Kuiw § M
Approved: (Cmg
Kevin McCarty, Ph.D., Department of Mathematics & Computer Science, Faculty
Advisor
Approved: % / =
Audra Butkus, College of Natural and Applied Sciences, Second Reader
5 Myerd
Approved: N

Barry Myers, Ph.D., Chair, Department of Mathematics & Computer Science

ABSTRACT

Detecting Stock Market Patterns via Standard Query Language Data Analytics Among a Stock
Screener Application.

BOERNER, BLESSING BRAELYN, DR. MCCARTY, KEVIN (Department of
Mathematics and Computer Science)

Predictive analysis within the stock market has been agoal of many different banks and large
organizations as well asindividual traders, as there are substantial monetary gains to be had. The
objective of this project isto ask the question: Can one use patterns devel oped within the stock
market to predict the behavior and achieve positive financial margins? When beginning this
research endeavor, learning the current patterns for trading algorithms is necessary. Traders often
use technical analysisto predict future stocks moves. With this information and a sample
database of around nineteen years of stock data, this hypothesis was tested on the Golden and
Death Cross. Using specialized SQL queries these patterns were investigated through a series of
tables and extensively explored to provide relevant data needed to achieve a prediction method
for the trading algorithm. The results demonstrated that the opposite hypothesis, buying on the
Death Cross and selling on the Golden Cross, occurred when employing these patterns

implemented by this approach.

ACKNOWLEDGMENTS

This project was completed with the support of multipleindividuals. | would like to thank
the Computer Science Faculty for funding the research of this application and making all this
possible. Thank you to Dr. McCarty for being the project creator, manager, and most of al my
greatest mentor. | would like to thank my fellow lab administrators Andrew Welk and Ender
Sandiage for the Systems Administration support. A special thanksto Tyler Sheafor the assistance
in the development and curation of the Golden Cross and Death cross queries. Thank you to Dr.
Myers for being my academic advisor and guiding me through the advancement of my senior

research paper.

Table of Contents

AB ST RACT e et b e e b e bt ettt h et e s he e et e bt e R e e b e bt et e nE e Rt e b s beeae e b nae s iii
ACKNOWLEDGMENTS ...ttt ettt ettt sb e st e st e st s b e b e e sbe e s ae e sanesnneereas iv
TADIE Of CONEENES......oiiiiiciit ettt b e bt e b et s e nn e v
TADIE OF FIQUIES......ciieeeee et b e bt bt n e e e e e e e se st ene e nas Vi
PROJECT BACK GROUNDottt sttt sttt sae e st b b e saeesneas 1
PROJECT OBJIECTIVE ...ttt st ettt s be et bt nbe e e e 2
IMPLEMENTATION L.ttt ettt bt st e st e st e b e e be e sneesateenbeebeanneen 3
TEST RESUL TS ..ttt sttt ettt s h e st e et s bt b e e b e e s R e e ehe e e meeeaeeebeesbeesbeesaeesanenane 9
CONCLUSION .ttt et b e s a e st e et e et e e sb e e sae e satesabeebe e beesbeesaeesneesnseebeens 14
FUTURE WORK ..ttt st sttt b e b bt e s ae e sae e e e e et e e sbeesbe e sanesaneeane 15
WORK S CITED ...ttt bbbttt te e nbe e sbe e sae e satesabeebeenbeenbeenneas 16
APPENDICIES ...ttt ettt et et e e she e sae e san e sar e e n e e sneenneenneas 17

Table of Figures

Figurel - Golden Cross and Death Cross Visualcccoceieririnineninineeeceeeseese e 6
Figure 2 - Actual Death Crossand Golden Cross Visual in Stock Market...................... 6
Figure 3 - Typical Trader Analyst’s Platformccccooiiiniiininnneee e 7
Figure4 - Joining of the Golden Crossand Death Cross.........cocovvevinereeieenencseseseenes 8
Figure5— Database Entity Relationship Diagram.........ccccecererenenenenenieeeeseeeeseesie s 9
Figure 6 - Results of UpandDownStocks.SOl QUENYeeeecieeieiie e 10
Figure 7 - Results of GoldenCross.Sgl QUENYcueieeiieeieciere et 11
Figure 8 — GoldenCrossUpdated.sgl Query Source Code..........ccovveveeeenecieeieeseesiesnens 12
Figure 9 — Switch for Optimal Profit Source Codec.ccoevviieiieiececeese e 13
Figure 10 — Profit Results Based 0N StOCK PriCeccovvieiieiece e 13

Vi

PROJECT BACKGROUND
When walking around agrocery storethere is areason behind the placement of its products.

For example, milk, one of the most bought items, isin the back of the store. The reason for thisis
to exhort the customer to walk around the entirety of the store while browsing through other
products that they will most likely end up buying. The placement of the products is intentionally
designed based on human tendencies. Human patterns are seen everywhere, the more you look the
moreyou will find. Behavioral tendencies manifest in smaller time frames, recorded by predictable
patterns. These designs are useful for a plethora of organizations other than grocery markets. For
example, social media detects a human’s interaction with the platform and uses predictive analytics
for better intercommunication. For this project specificaly, it isuseful for the stock market. Within
the stock market two common patterns are the Golden and Death Cross. These are the two this

project will test and focus on specificaly.

PROJECT OBJECTIVE

In the stock market, money is a measure of success or failure. Traderstry to increase their
odds of success using patterns. If the patterns were easy to track, the likelihood of success would
be high, however, competition among traders tends to make patterns more difficult to track. This
competition usually involves “front-running,” which is atechnique where a trader tries to adapt to
apattern by invoking aparticular strategy just in front of other traders. An interesting thing to note
isthe different types of tradersin the stock market. Retail traders more commonly abide by front-
running strategies, whereas hedge funds look at stocks differently as they have policies about
which stocks, they can invest in. This creates margins in the stock market and shows the variation
of differing trading behaviors. The overarching goal of this project isto examine apair of common
patterns and test them. To complete this goal, we began by contextualizing data. Contextualizing
datais viewing outcomes and seeing whether they are the result of an underlying human emotion.
For instance, individuals may see price movement and be more inclined to buy or sell simply
because the “chart” looks good or bad, which is often an emotional response. Data analyzing is a
difficult concept especially when it comesto the stock market. Algorithmsto detect patternsin the
stock market have been around for years, however, dueto its complexity, thereis aways something
to further to discover. The stock market contains massive amounts of data. Thisproject’s aim is to
sort through the noise and find something of value. The first step to get there is evaluating a
common pair of existing patterns.

The first trend to discuss is the Golden Cross pattern. The Golden Cross is a bullish, or
positive pattern where a short-term trendline crosses above along-term trendline. It isaspecialized
chart pattern that is widely believed to result in an increasing price move, hence, the word
“golden”. For afurther definition of the Golden Cross pattern, refer to appendix B. The second
trend researched this summer is the opposite of a Golden Cross, a Death Cross. For a more

2

completion explanation, refer to appendix D. The Death Crossis also a specialized chart trend that
indicates a possibility of a selloff. Both patterns are believed to be reliable predictors in the stock
market. Better visualizing these trends requires a series of complex SQL queries, designed to
isolate both the trends themselves and then determine the crossover points and which type of
crossover occurs. It isimportant to note that this thesis builds on previous work conducted in the

summer of 2020. For afurther background of the previous research, refer to appendix E.

IMPLEMENTATION

l. QUERIES

The curation of data is a whole other process in and of itself. The accumulation of stock
market data has been ongoing for the past two year. It is approximately 500 gigabytes of data and
contains tables of billions of rows, which presents a great research opportunity to those in this
industry. The collection includes stock data all the way back from 2002. With a database this size,
the potential for adata swamp is highly probable. For afurther explanation of a data swamp, refer
to appendix F. Due to the size of the database, the role of a database manager is essential. The
beginning of this role primarily involved creating SSIS tasks (refer to appendix G), adding tasks
to the SQL agent (refer to appendix H), scheduling jobs on the server, and spot-checking results.
Later, we started automating the maintenance plans in the database, which consists of gathering,
archiving, and backing up data. Automating processes is an efficient method to save time and
alows for any database administrator to properly comprehend how to manage the data. Backing
up the datarequires an extensive amount of time and storage due to the size of the database (2 TB).
Another important step in backups is filling any gaps of missing information in the data. The

integrity of the datais crucial to achieve optimal functionality and verify the accuracy of the model.

As| joined the team and became more familiar with the queries necessary to comply with
the stock server, we started creating specialized queries for the stock presel ection. We spent hours
curating specially designed queries over large timeframesto shape the database. For example, there
exists a query to capture all daily highs, which is taking daily summary data and outputting the
high trends, outputting to the daily summary table. Also, there are existing minute data that take
snapshots of the market minute by minute. With these precedent queries, we started to grow the
preselection and continue developing towards further trend specifications, i.e., Golden Cross and

Death Cross.

. METHODS

To provide context for the two patterns we tested, we performed the following steps:
1. Generatealist of highs and lows over various time periods

2. Determine what directions/trends stocks are going over those time periods

3. Catch stocks in “reversals” for analysis

4. Date each move

5. Caculate the type of cross that occurs

6. Aggregate the performance of the stocks of each type of crossover varying time periods

For step one, we created a query to process each stock and determine if a stock was up or
down. Thiswas cal culated by examining a stocks close price and the buy priceright afterwards. If
there was a high after alow, then the stock is going up. If there was a low after a high, then the
stock is going down. This sounds self-explanatory, but it is necessary to determine it on the

analytical and technical level to see the direction of atrend.

Step two is the high/low step. We implement this step by developing queries with the said
strategy of the Golden Cross and Death Cross such that the stocks that were up or down were
defined. Thus, the Up& DownStocks.sgl query was created. This query explains an overview of
the stock data. An overview of the stock data was sampled and reviewed based on a variety of
variables such as a 52-week high, a 52-week low, 26-week high and low, and the same for 13
weeks. The daily high query was used to verify the data and validate the max values. The 52, 26,
and 13-week highs were found by finding the week low after the week high. These results were
crucial for the development of the project as they are fundamental to further research trends.

After the Up& DownStocks.sgl query was created, trends among daily quotes were found,
thus creating the VReversalsDaily.sgl query to find reversals in daily quotes. This process pulled
from a group of stocks that were green (up) the day before, considering the green and red
candlesticks seen within the stock market. Stocks that were in an uptrend were found based on if
they were up the previous week. After this, stocks that were lower the previous three days were
investigated to create a table called ‘gains’ that resulted in the profit data based on the open price,
close price, quote date, and symbol, which is the company.

With the Up& DownStocks.sgl and the VReversalsDaily.sgl query, the Golden Cross and
Death Cross queries had enough data to be created. So, the GoldenCross.sgl query was created.
The first step in this process was to use the date of the symbols as the primary key for each stock.
The stocks were then organized by the moving average, which was defined previously. The
moving average was outlined by 5 days and then 20 days. After these were calculated, the closing
prices were determined resulting in the findings of the Golden Cross (GC) and Death Cross (DC).
The GC is developed when the 5-day moving average is above the 20-day moving average. The

DC is developed when the 5-day moving average is below the 20-day moving average.

Death Cross

™
Golden Cross

. 5-Day Moving Average . 20-Day Moving Average

Figurel - Golden Crossand Death Cross Visual

The red line represents the 5-day moving average and the blue line represents the 20-day

moving average.

Figure 2 — Actual Death Cross and Golden Cross Visual in Stock Market
The image above illustrates an actual market Death Cross, seen by the first red arrow,
showing the 5-day moving average diving below the 20-day moving average. The second red
arrow illustrates a Golden Cross where the 5-day moving average rises above the 20-day moving
average. Also note that the moving averages may vary by test, however, 5, 10, and 20- day moving

averages were implemented for this research.

Figure 3 - Typical Trader Analyst’s Platform

The image above is a screen scrape of what a typical trader’s analyst platform looks like.
Thisisusing an application called Think or Swim.

With this information, finding where the Golden Cross occurred before the Death Cross
was necessary. After this, the data was duplicated to ensure there were no gaps in the data
Validation of data is crucial in ensuring the accuracy of the results and trading algorithm, as
mentioned above. After this, the buy point was found using the daily high data tables. Differing
stocks were tested based on the close pricee A new query was created called
GoldesCrossUpdated.sgl and was joined with the Up& DownStocks.sgl table. It was joined on
multiple primary keys to avoid duplicating unnecessary data. Duplicated data presented was an
issue as there were two places that have a GC and DC afterward when it showed three points even
though it should only betwo. To fix thisissue, the stocks/symbols were ordered by the most recent

date to narrow the data down.

After the basics of the GC and DC were found, the tables were joined with the
HistoryQuotesDay table, which contains a symbol/stock’s Close Price, High Price, and Quote Date
al of which are crucial in determining the profit evaluation. To retrieve the profit potential, the
Golden Cross value was subtracted from the Death Cross value and summarized to find. In SQL

terms, the h1ClosePrice was subtracted from the h2ClosePrice as seen bel ow.

Figure 4 — Joining of the Golden Cross and Death Cross

156 -- SUM of overall profit

157 SELECT SUM(h1.ClosePrice - h2.ClosePrice) as Profit --switched hl and h2 to get + profit value
158 --, hl.HighPrice

159 --, hl.ClosePrice

168 FROM [GeldenCrosses] g

161 INNER JOIN [DeathCrosses] d ON g.Symbol = d.Symbol

162 INNER JOIN HistoryQuotesDay hil

163 ON CAST(g.QuoteDate as date) = CAST(hl.QuoteUTCDate as date) AND g.Symbol = hl.Symbol
164 INNER JOIN HistoryQuotesDay h2

165 OM CAST(d.QuoteDate as date) = CAST(h2.QuoteUTCDate as date) AND d.Symbol = h2.Symbol
166 --WHERE h1.QuoteUTCDate > DATEADD(Day, -18, hl.QuoteUTCDate)

VReversalsDaily Table
Upé&DownStocks Table
Symbol string -
R . Symbol string
Close Price int
Min Close Price |int
High Price int
. Max High Price |int
Open Price int . _
. Open Price int
Volume int)
) QuoteDate string
QuoteDate string)
. QuoteUTCDate |string
QuoteUTCDate | string
{ HistoryQuotesDay Table [>—
Symbol var Primary Key for all Tables
—«< | Close Price int S |Symlml var |
High Price int
Quote Date string
QuoteUTCDate |string
GoldenCross Table
DeathCross Table
Close Price int
)) . Close Price int
High Price int
. High Price int
Quote Date sitring
uote Date strin.
Symbol string @ 9
Symbol string

Figure 5 — Database Entity Relationship Diagram

The diagram illustrates the connection between each of the SQL tables. All of the tables

stem from the data in the History Quotes Day table and are connected through the symbol variable

asthe primary key.

TEST RESULTS

Result 1: Refer to UpandDownStocks.sgl source code in Appendix |.

Figure 6 - Results of UpandDownStocks.sgl Query

The results show the number of individua stocks, the Quote Date, the Low Price, the

Volume, Last52Date, L ast28Date, and LastWeek into atable called #MaxVals.

0N O YR Ww N A

i beak; | ikt | oo
2w N0

o

ECOZ

EDRY
EEA
EEMV
EFAS
EFNL
EFX

B Results i Messages

IndividualStocks

QuoteUTCDate

2020-10-21 04:00:00.0000000
2020-10-21 04:00:00.0000000
2020-10-21 04:00:00.0000000
2020-10-21 04:00:00.0000000
2020-10-21 04:00:00.0000000
2020-10-21 04:00:00.0000000
2020-10-21 04:00:00.0000000
2020-10-21 04:00:00.0000000
2020-10-21 04:00:00.0000000
2020-10-21 04:00:00.0000000
2020-10-21 04:00:00.0000000
2020-10-21 04:00:00.0000000
2020-10-21 04:00:00.0000000
2020-10-21 04:00:00.0000000
2020-10-21 04:00:00.0000000

HighPrice ClosePrice
39.2345 39.2345
289215 287760
26.1000 25.9300
1.3500 1.3200
364100 36.3700
9.9700 9.7200
206.2050 203.2100
31.8900 31.7967
7.2100 7.2100
4.2100 4.0500
9.2533 9.1500
56.8400 56.6900
121800 121800
421600 41.9200
163.2000 162.3500

LowPrice Volume
32.1500 2241
287760 4031
259200 50280
1.1600 257752
363700 774
9.7050 2319424
2022900 2021365
31.7967 257
7.1500 62702
4.0300 14842
9.1500 138516
564700 336077
121800 268
418700 13525
159.8900 1548568

Last52Date

2019-10-21 04:00:00.0000000
2019-10-21 04:00:00.0000000
2019-10-21 04:00:00.0000000
2019-10-21 04:00:00.0000000
2019-10-21 04:00:00.0000000
2019-10-21 04:00:00.0000000
2019-10-21 04:00:00.0000000
2019-10-21 04:00:00.0000000
2019-10-21 04:00:00.0000000
2019-10-21 04:00:00.0000000
2019-10-21 04:00:00.0000000
2019-10-21 04:00:00.0000000
2019-10-21 04:00:00.0000000
2019-10-21 04:00:00.0000000
2019-10-21 04:00:00.0000000

10

Last26Date

2020-04-21 04:00:00.0000000
2020-04-21 04:00:00.0000000
2020-04-21 04:00:00.0000000
2020-04-21 04:00:00.0000000
2020-04-21 04:00:00.0000000
2020-04-21 04:00:00.0000000
2020-04-21 04:00:00.0000000
2020-04-21 04:00:00.0000000
2020-04-21 04:00:00.0000000
2020-04-21 04:00:00.0000000
2020-04-21 04:00:00.0000000
2020-04-21 04:00:00.0000000
2020-04-21 04:00:00.0000000
2020-04-21 04:00:00.0000000
2020-04-21 04:00:00.0000000

Last13Date

2020-07-21 04:00:00.0000000
2020-07-21 04:00:00.0000000
2020-07-21 04:00:00.0000000
2020-07-21 04:00:00.0000000
2020-07-21 04:00:00.0000000
2020-07-21 04:00:00.0000000
2020-07-21 04:00:00.0000000
2020-07-21 04:00:00.0000000
2020-07-21 04:00:00.0000000
2020-07-21 04:00:00.0000000
2020-07-21 04:00:00.0000000
2020-07-21 04:00:00.0000000
2020-07-21 04:00:00.0000000
2020-07-21 04:00:00.0000000
2020-07-21 04:00:00.0000000

LastWeek

2020-10-14 04:00:00.0000000
2020-10-14 04:00:00.0000000
2020-10-14 04:00:00.0000000
2020-10-14 04:00:00.0000000
2020-10-14 04:00:00.0000000
2020-10-14 04:00:00.0000000
2020-10-14 04:00:00.0000000
2020-10-14 04:00:00.0000000
2020-10-14 04:00:00.0000000
2020-10-14 04:00:00.0000000
2020-10-14 04:00:00.0000000
2020-10-14 04:00:00.0000000
2020-10-14 04:00:00.0000000
2020-10-14 04:00:00.0000000
2020-10-14 04:00:00.0000000

Results 2: Refer to GoldenCross.sgl source code in Appendix K.

B Results ¥ Messages
[QuoteDate

2021-05-19
2021-05-20
2021-05-21
2021-05-24
2021-05-25
2021-05-26
2021-05-27
2021-05-28
2021-06-01
2021-06-02
2021-06-03
20210604

W 0N U A WN o

QuoteDate

2021-06-30
2021-07-01
2021-07-02
2021-07-06
2021-07-07
2021-07-08
2021-07-09
2021-07-12
2021-07-13
2021-07-14
2021-07-15
20210718

QuoteDate

2021-05-19
2021-05-20
2021-05-21
2021-05-24
2021-05-25
2021-05-26
2021-05-27
2021-05-28
2021-06-01
2021-06-02
2021-06-03

2N21_NA_NA

AAIC

1

2

3

4 AAIC
5 AAIC
6 AAIC
7 AAIC
8 AAIC
9 AAIC
10 AAIC
11 AAIC

| 19 anie

Symbol

QuoteDate

2021-06-11
2021-06-14
2021-06-15
2021-06-16
2021-06-17
2021-06-18
2021-06-21
2021-06-22
2021-06-23
2021-06-24
2021-06-25
INI1_NAR-I

© W N O U R W N

-
o

<
g

a
9

ACP

~

Figure 7 - Results of GoldenCross.sgl Query

Closei:’;ice LagOuoteélosﬂ

33.0900 NULL
33.7600 33.0900
34.7700 33.7600
34.5900 34.7700
34.2100 34.5900
36.0700 34.2100
36.1300 36.0700
35.9700 36.1300
36.0800 359700
36.0900 36.0800
35.9900 36.0900
261200 3R000N
ClosePrice LagQuoteClose1

92.5000 93.1000
92.8600 925000
92.0300 92.8600
90.6800 92.0300
88.7000 90.6800
88.6800 88.7000
89.9900 88.6800
88.5000 89.9900
86.3800 88.5000
83.1800 86.3800
82.3800 83.1800
22 eenn 22 320N
ClosePrice LagQuoteClose1
3.89900 NULL
4.0100 3.9900
4.1000 4.0100
4.0900 4.1000
4.0100 4.0900
4.0100 4.0100
4.0300 4.0100
4.0700 4.0300
4.0900 4.0700
4.0600 4.0900
4.0100 4.0600
A nnnn A N1nn
ClosePrice LagQuoteClose1
11.0700 11.2800
10.8700 11.0700
11.0400 10.9700
10.7600 11.0400
11.0400 10.7600
11.2000 11.0400
11.3100 11.2000
11.3600 11.3100
11.3600 11.3600
11.1600 11.3600
11.1100 11.1600
11 N7nn 11 1100

7LagQ|.’|oteé|’ose2 LagQuoteéI;)se?:

NULL NULL
NULL NULL
33.0900 NULL
33.7600 33.0800
34.7700 33.7600
34.5800 34.7700
34.2100 34,5900
36.0700 34.2100
36.1300 36.0700
35.9700 36.1300
36.0800 35.9700
2BNONN__ 3AN2NN
LagQuoteClose2 LagQuoteClose3
93.0100 90.0800
93.1000 93.0100
92.5000 93.1000
92.8600 92,5000
92.0300 92.8600
90.6800 92.0300
88.7000 90.6800
88.6800 88.7000
89.9900 88.6800
88.5000 89.9900
86.3800 88.5000
31800 eA3@NN
LagQuoteClose2 LagQuoteClose3
NULL NULL
NULL NULL
3.9900 NULL
4.0100 3.9900
4.1000 4.0100
4.0800 4.1000
4.0100 4.0900
4.0100 4.0100
4.0300 4.0100
4.0700 4.0300
4.0900 4.0700

A NRNN A nhann
LagQuoteClose2 LagQuoteClose3
11.3700 11.5100
11.2800 11.3700
11.0700 11.2800
10.9700 11.0700
11.0400 10.9700
10.7600 11.0400
11.0400 10.7600
11.2000 11.0400
11.3100 11.2000
11.3600 11.3100
11.3600 11.3600

11 1RNN

11 2RNN

11

LagQuoteClosed
NULL
NULL
NULL
NULL
33.0900
33.7600
34.7700
345900
34.2100
36.0700
36.1300
280700
LagQuoteClosed
89.6500
90.0800
93.0100
93.1000
92.5000
92.8600
92.0300
90.6800
88.7000
88.6800
89.9900
22 50NN
LagQuoteClosed
NULL
NULL
NULL
NULL
3.9900
4.0100
4.1000
4.0900
4.0100
4.0100
4.0300

A nN7nn

LagQuoteClosed
11.5800
11.5100
11.3700
11.2800
11.0700
10.9700
11.0400
10.7600
11.0400
11.2000
11.3100
11 2RNN

LagQuoteClose5
NULL
NULL
NULL
NULL
NULL
33.0800
33.7600
34.7700
34.5900
34.2100
36.0700
3/ 130N
LagQuoteClose5
88.5200
89.6500
90.0800
93.0100
93.1000
925000
92.8600
92.0300
90.6800
88.7000
88.6800
20 0onn
LagQuoteClose5
NULL
NULL
NULL
NULL
NULL
3.9900
4.0100
4.1000
4.0900
4.0100

4.0100
A n2nn

LagQuoteClose5
11.6000
11.5900
11.5100
11.3700
11.2800
11.0700
10.9700
11.0400
10.7600
11.0400
11.2000
112100

FiveDayMA
91.668000
92.310000
92.700000
92.234000
91.354000
90.580000
90.016000
89.310000
88.450000
87.346000
86.086000
24 ARANNN
LagQuoteClosef
NULL
NULL
NULL
NULL
NULL
NULL
3.9900
4.0100
4.1000
4.0900
4.0100

A Nninn

LagQuoteClosef
11.6400
11.6000
11.5900
11.5100
11.3700
11.2800
11.0700
10.9700
11.0400
10.7600

11.0400
11 2000

LagQuoteClose7
NULL
NULL
NULL
NULL
NULL
NULL
NULL
3.9900
4.0100
4.1000
4.0900

ANninn

LagQuoteClose7
11.8500
11.6400
11.6000
11.5900
11.5100
11.3700
11.2800
11.0700
10.9700
11.0400
10.7600
11 nAnn

LagQuoteClose8
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
3.9900
4.0100

4.1000
4 nonn

LagQuoteClose8
11.7000
11.8500
11.6400
11.6000
11.5900
11.5100
11.3700
11.2800
11.0700
10.8700
11.0400
1N 7RNN

To find the overal summary of the profit and see the total gain the prices for the GC and
DC were joined with the Daily Summary table and History Quotes Day table. Within the span of
afew months, the results showed a profit of -$5226.0994. After these results, the hypothesis, GC
before DC, was proven incorrect. The method was switched to finding quotes where the DC
appears before the GC. So, buy on the DC and sell on the GC. The h1l and h2 values of the Close
Price within the were switched to ensure optimal profit value, which resulted in +$5226.0994. So,
this means that the optimal method for the highest profit is buying on the Death Cross and selling

on the Golden Cross as seen below using a common table expression.

Figure 8 — GoldenCrossUpdated.sgl Query Source Code

171 --- switch where dc is before gc to test

172 ;WITH TestDates as (SELECT g.Symbol -- common table expressions
173 , DATEADD(Day, 14, d.QuoteDate) as Nextl4Days

174 , d.QuoteDate AS DeathQuoteDate

175 , g.QuoteDate AS GoldenQuoteDate

176 FROM [GoldenCrosses] g

177 TNMER JOIN [DeathCrosses] d ON g.Symbol = d.Symbol

178 WHERE d.QuoteDate < g.QuoteDate)

179 --ORDER BY g.QuoteDate , d.QuoteDate , g.Symbol

180 SELECT td.Symbol

181 , MAX(h.HighPrice) as MaxHighPrice -- aggregate function
182 , FORMAT(DeathQuoteDate, 'MM-dd-yyyy') as DeathQuoteDate

183 , MNextldDays

184 FROM TestDates as td

185 TNNER JOIN [HistoryQuotesDay] h ON td.Symbol = h.Symbol

186 WHERE h.QuoteUTCDate betwsen td.Nextl4Days AND h.QuoteUTCDate

187 GROUP BY +td.Symbol, MNextl4Days, DeathQuoteDate, GoldenQuoteDate

188 ORDER BY Symbol asc

189

After this, moretests were performed to validate that the original hypothesiswasincorrect.
Thiswas done by looking at the dates within the stock market trading software. The average profit

based on Trend 10Day was calculated as seen below.

12

Figure 9 — Switch for Optimal Profit Source Code

249 --getting average profit based on Trendl@Day

250 SELECT --DISTINCT g.Quotedate, g.Symbol

251 s.Trendl@Day

252 --, LAG(g.QuoteDate, 1) OVER(PARTITION BY g.Symbol ORDER BY g.Symbol, g.QuoteDate) AS PreviousQuoteDate
253 , SUM(h1.ClosePrice - h2.ClosePrice)/SUM(h2.ClosePrice) * 188 as Profit
254 --, AVG(h2.ClosePrice - hl.ClosePrice) as Profit gc before dc is negative profit
255 FROM [GoldenCrosses] g

256 INMNER JOIN [DeathCrosses] d ON g.Symbol = d.Symbol

257 THNNER JOIN HistoryQuotesDay hil

258 ON CAST(g.QuoteDate as date) = CAST(hl.QuoteUTCDate as date)

259 AND g.Symbol = h1.Symbol

260 INMER JOIM HistoryQuotesDay h2

261 OM CAST(d.QuoteDate as date) = CAST(h2.QuoteUTCDate as date)

262 AND d.Symbol = h2.Symbol

263 THMNER JOTN DailySummary s

264 ON CAST(s.SummaryDate as date) = CAST(g.QuoteDate as date)

265 AND s.Symbol = g.Symbol

266 WHERE h1.QuoteUTCDate > DATEADD(Day, -10, hl.QuoteUTCDate)

267 AND d.QuoteDate < g.QuoteDate

268 AND h1l.ClosePrice < 58 --stocks less than 58

269 GROUP BY s.Trendl®Day --, g.QuoteDate, g.Symbol

The up or downtrend of the stock was cal culated based on the close price of the stock. The
results are seen below. Also, the percentages of the profit were found by dividing the sum of the

profit by the sum of the close price times 100.

Stocks under $5 Stocks under $50
Bl Results =¥ Messages EH Results g# Messages
Profit i

Figure 10 — Profit Results Based on Stock Price
One of the most interesting pieces about the results depends on the price of the stock. For
example, stocks lessthan $5 or less than $50 output different results on not only price but aso the
order of the cross pattern. Asyou can seein theimages above, stocks|ess than $5 produce negative
profit and stocks less than $50 produce positive profit when buying first on the DC and selling on
the GC. Of course, these are very small scale, however, once invested in a multitude of stocks, the

profit instantly increases.

13

https://docs.google.com/document/d/1oNu9BgI1cWu0Qw7CraDXhX8p5mJ9CdJ_xO7fxWzPsS4/edit?usp=sharing

CONCLUSION

The objective of this project wasto ask the question: Can one use patterns developed within
the stock market to predict the behavior and achieve positive financial margins? With this
information and a sample database of around nineteen years of stock data, this hypothesis was
tested on the Golden and Death Cross. Using specialized SQL queries these patterns were
investigated through a series of tables and extensively explored to provide relevant data needed to
achieve a prediction method for the trading algorithm. The data demonstrated that the opposite
hypothesis, buying on the Death Cross and selling on the Golden Cross, occurred when employing
these patternsimplemented by this approach. The original hypothesisfor the optimal collaboration
of patterns regarding Golden Cross and Death Cross performance was to buy on the Golden Cross
and to sell on the Death Cross. However, the development of this data proved otherwise. The
original hypothesis was 180 degrees incorrect. The data showed the highest profit occurred to buy
on the Death Cross and sell on the Golden Cross. Although the hypothesis was proved to be
incorrect, the results are still profitable and successful. The result of this work pointsto why it is
necessary to test trends and create software to do so. Researchers and stock traders do not want to
guestion the possibility of major success at the expense of capital gain/money. So, ensuring any

possible source for success, regardless how it occurred, concludes with positive results.

| think the biggest reason for the opposing hypothesis, buy on the DC and sell on the GC,
isadtatistical variation due to the types of traders and what types of stocks they buy. For example,
retail investors who buy stocks less than five dollars are the ones who follow the front-running
ideology of buying on GC and selling on the DC. Hedge funds on the other hand look at stocks
differently as they have policies to not invest in stocks lower than five dollars. A reason for this

may be because cheaper stocks tend to be new and less substantial. This creates margins in the

14

stock market as it shows the variation of differing traders. So, lower retail traders who ride lower
stock prices follow the front running patterns of GC before DC as it is the most “intuitively
correct”. However, the data points to a new type of trading pattern for a higher profit. Buying on
the Death Cross and selling on the Golden Cross often results in higher profit due to the
ingtitutional investors who deal with higher priced stock and use technical indicators less. Even
without the clear profit results, there is a change in the pattern. Of course, higher stocks will have
ahigher profit, however, when the profit occursthereis an interesting change in the pattern order,
buying on DC first or GC first. Although it is difficult to say the exact reasons the hypothesis was
completely different from the concluding results, the data still presents itself as supporting

information for the stock screener application.

FUTURE WORK
Because the results went against conventional wisdom, it behooves us to determine the

exact cause. Other future work of this project is to incorporate artificia intelligence (Al) and
machine learning (ML) into the algorithm. The research presented in this thesis serves as a great
addition to the stock screener application. The use of trend detection using SQL analysis aids to
the application as it narrows in on what data to focus on and how to better improve the model. In
addition to the Al/ML incorporation, adding new filters on the existing queries would be useful in

further testing and modifications.

15

WORKSCITED

Chen, James. “What Is a Death Cross?” Investopedia, Investopedia, 9 Nov. 2021,

https.//www.investopedia.com/terms/d/deathcross.asp.

Chugugrace. “SQL Server Integration Services - SQL Server Integration Services (SSIS).” SQL
Server Integration Services (S3S) | Microsoft Docs, https://docs.microsoft.com/en-

us/sgl/integration-services/sgl-server-integrati on-services?view=sgl-server-ver15.

“Data Lakes and Data Swamps.” |IBM Developer, https://devel oper.ibm.com/articles/ba-data-

becomes-knowledge-2/.

Fernando, Jason. “Moving Average (MA) Definition.” Investopedia, Investopedia, 9 Nov. 2021,

https://www.investopedia.com/terms/m/movingaverage.asp.

Hayes, Adam. “What Is a Golden Cross?” Investopedia, Investopedia, 9 Nov. 2021,

https://www.investopedia.com/terms/g/gol dencross.asp.

16

APPENDICIES

A. Investopedia Definition - A financial site that originated in New Y ork. This website was
used for multiple definitions such as, Golden Cross, Death Cross, and moving average.

B. Golden Cross Definition Expanded - A Golden Cross is defined by, “achart patternin
which arelatively short-term moving average crosses above along-term moving
average” (Investopedia Golden Cross). It is a “breakout pattern formed from a crossover
involving a security's short-term moving average (such as the 15-day moving average)
breaking above its long-term moving average (such as the 50-day moving average) or
resistance level. Aslong-term indicators carry more weight, the Golden Cross indicates a
bull market on the horizon and is reinforced by high trading volumes” (Investopedia
Golden Cross).

C. Moving Average Definition - A moving average is defined by, “...a calculation used to
analyze data points by creating a series of averages of different subsets of the full data
set” (Investopedia Moving Average).

D. Death Cross Definition - Investopedia provides a definition asit writes, “[t]he Death
Crossisatechnical chart pattern indicating the potential for amajor sell-off. The Death
Cross appears on a chart when a stock’s short-term moving average crosses below its
long-term moving average. Typicaly, the most common moving averages used in this
pattern are the 50-day and 200-day moving averages” (Investopedia Death Cross).

E. Summer 2020 Resear ch on the Stock Bot - The genesis of the app began in the summer
of 2020. The team members included Kyle Duncan, Jeffrey Fairbanks, Andrew Welk, Dr.
McCarty, and |. Each of us had different rolesin the project. Kyle and Jeff worked on the

machine learning of the application, my role was and is the database developer, Andrew

17

mailto:kduncan@nnu.edu
mailto:jfairbanks@nnu.edu
mailto:awelk@nnu.edu

was the systems architect, and Dr. McCarty was the project creator and manager.
Throughout the duration of this project, Orion Trotter took on the role of the machine
learning developer and Ender Sandiage joined the team as another systems architect.
Also, aspecia thanksto Tyler Sheafor the assistance in developing the Golden Cross
and Death Cross queries. The goal of the project was to create an application that can
automatically invest and sell in the stock market. Stock screener applications similar to
this are currently being used all around the world. However, we wanted to create an
application that integrated more. Most applications use high-tech algorithmsto adhereto
such tasks and eliminate human interaction. Dr. McCarty wanted to add new el ements to
the mix such as fuzzy logic using exterior platforms such as social media to integrate into
specialized trading algorithms. The primary motive to create such an application is for the
advancement of the Computer Science Department at NNU. We want to produce a means
of financial gain for agreater purpose that serves the school well and administers greater
opportunities for the students

. Data Swamp Definition - IMB shares a definition of a data swamp as it writes, “A data
swamp is abadly designed, inadequately documented, or poorly maintained data lake.
These deficiencies compromise the ability to retrieve data, and users are unable to
analyze and exploit the data efficiently” (IBM Developer). Data lakes and warehouses
include processes that manage massive amounts of data that are intended to perform
specialized queries and data analysis (IBM Devel oper).

. SSIS Tasks Definition - SQL Service Integration Service. Microsoft provides a
definition of SSIS as it writes, “SQL Server Integration Servicesis aplatform for

building enterprise-level data integration and data transformations solutions. Use

18

Integration Services to solve complex business problems by copying or downloading
files, loading data warehouses, cleansing and mining data, and managing SQL Server
objects and data” (Microsoft Ignite, SSIS Tasks).

H. SQL Agent Definition - Microsoft provides a definition of the SQL Agent as it writes,
“SQL Server Agent isaMicrosoft Windows service that executes scheduled
administrative tasks, which are called jobs in SQL Server” (Microsoft Ignite, SQL
Agent).

UpandDownStocks.sql Source Code —

USE StockAnalysis
GO
-- #1 the number of individual stocksin our sample
SELECT COUNT(distinct symbol) FROM DailySummary -- = 7938
-- the number of tables
SELECT COUNT(*) as[tables] FROM dbo.DailySummary -- = 3530391
-- For 52: Stocks that are up (52-week high after 52-week [ow)
SELECT Symbol, Max (HighPrice) as MaxValues2
INTO #MaxVaues2
FROM dbo.HistoryQuotesDay
WHERE QuoteUTCDate > DATEADD(Month, -12, QuoteUTCDate)
GROUP BY Symbol -- 7938
-- select * from #MaxVaueb2
--For 52: Stocks that are down (52-week low after 52-week high)
-- low values
USE StockAnalysis
GO
SELECT
Symbol
, Min (LowPrice) as MinVaues2
INTO #MinValue52
FROM dbo.HistoryQuotesDay
WHERE QuoteUTCDate > DATEADD(Month, -12, QuoteUTCDate)
GROUP BY Symbol
-- select * from #MinValues2
-- For 26: Stocksthat are up (26-week high after 26-week low)
DROP TABLE IF EXISTS #MaxVaue26
SELECT
Symbol
, Max (HighPrice) as MaxVaue26
INTO #MaxValue26
FROM dbo.HistoryQuotesDay
WHERE QuoteUTCDate > DATEADD(Month, -6, QuoteUTCDate)
GROUP BY Symbol
GO
-- select * from #MaxVaue26
-- 26 week low

19

SELECT
Symbol
, Min (LowPrice) as MinValue26
INTO #MinVaue26
FROM dbo.HistoryQuotesDay
WHERE QuoteUTCDate > DATEADD(Month, -6, QuoteUTCDate)
GROUP BY Symbol
GO
-- select * from #MinVaue26
-- For 13: Stocks that are up (13-week high after 13-week low)
SELECT
Symbol
, Max (HighPrice) as MaxValuel3
INTO #MaxValuel3
FROM dbo.HistoryQuotesDay
WHERE QuoteUTCDate > DATEADD(Month, -3, QuoteUTCDate)
GROUP BY Symbol
GO
-- select * from #MaxValuel3
-- 13 week low
SELECT
Symbol
, Min (LowPrice) as MinVauel3
INTO #MinVauel3
FROM dbo.HistoryQuotesDay
WHERE QuoteUTCDate > DATEADD(Month, -3, QuoteUTCDate)
GROUP BY Symbol
GO
-- select * from #MinValuel3
-- from daigly highs -- MaxVaues
-- Current high's for each date
DROP TABLE IF EXISTS #MaxVaues
SELECT --DISTINCT
Symbol
, QuoteUTCDate
, HighPrice
, ClosePrice
, LowPrice
, Volume
, DATEADD(Month, -12, QuoteUTCDate) AS Last52Date
, DATEADD(Month, -6, QuoteUTCDate) AS Last26Date
, DATEADD(Month, -3, QuoteUTCDate) AS Last13Date
, DATEADD(Day, -7, QuoteUTCDate) AS LastWeek
INTO #MaxValues
FROM dbo.HistoryQuotesDay
WHERE QuoteUTCDate > DATEADD(YEAR, -2, GetDate())
AND ClosePrice> 1
AND UPPER(Symbol) = Symbol COLLATE Latinl_General_CS AS
select * from #MaxValues
-- SELECT * FROM #MaxV alues;
-- SELECT COUNT (distinct symbol) FROM #MaxValues -- = 7947 (why are there 9 more values than in the
DailySummary table?)
-- 52 week high join -- | did v for value and g for quote
DROP TABLE IF EXISTS #maxHigh52Date;
SELECT
v.Symbol

20

, v.QuoteUTCDate

, Max(g.QuoteUTCDate) AS MaxHigh52Date
INTO #maxHigh52Date
FROM #MaxVauesv
INNER JOIN #MaxValues q -- | do not think the max values should be the same...

ON v.Symbol = q.Symbol

AND q.QuoteUTCDate BETWEEN v.Last52Date AND v.QuoteUTCDate
INNER JOIN #MaxVaue52 mh52

ON v.Symbol = mh52.Symbol

AND mh52.MaxVaues2 = g.HighPrice
GROUP BY v.Symbol, v.QuoteUTCDate;
-- SELECT * FROM #MaxHigh52Date;
DROP TABLE IF EXISTS #maxHigh26Dzate;
SELECT

v.Symbol

, V.QuoteUTCDate

, Max(q.QuoteUTCDate) AS MaxHigh26Date
INTO #maxHigh26Date
FROM #MaxVauesv
INNER JOIN #MaxValuesq

ON v.Symbol = g.Symbol

AND g.QuoteUTCDate BETWEEN v.Last26Date AND v.QuoteUTCDate
INNER JOIN #MaxValue26 mh26

ON v.Symbol = mh26.Symbol

AND mh26.MaxVaue26 = g.HighPrice
GROUP BY v.Symbol, v.QuoteUTCDate;
-- SELECT * FROM #maxHigh26Date
-- 13 week high join
DROP TABLE IF EXISTS #maxHigh13Date;
SELECT

v.Symbol

, V.QuoteUTCDate

, Max(q.QuoteUTCDate) AS MaxHighl3Date
INTO #maxHighl3Date
FROM #MaxVauesv
INNER JOIN #MaxValues q

ON v.Symbol = g.Symbol

AND q.QuoteUTCDate BETWEEN v.Last13Date AND v.QuoteUTCDate
INNER JOIN #MaxVauel3 mhl3

ON v.Symbol = mh13.Symbol

AND mh13.MaxVauel3 = q.HighPrice
GROUP BY v.Symbol, v.QuoteUTCDate;
-- SELECT * FROM #maxHigh13Date;
-- 52 max high week
DROP TABLE IF EXISTS #maxHighWeek;
SELECT

v.Symbol

, V.QuoteUTCDate

, Max(q.HighPrice) AS HighWeek
INTO #maxHighWeek
FROM #MaxVauesv
INNER JOIN #MaxValues q

ON v.Symbol = g.Symbol

AND q.QuoteUTCDate BETWEEN v.LastWeek AND v.QuoteUTCDate
GROUP BY v.Symbol, v.QuoteUTCDate
-- select * from #maxHighWeek

21

J. VReversalsDaily.sgl Source Code -

-- what about reversalsin daily quotes, can they work
-- first we want stocks where yesterday's bar was green
DECLARE @testDateCurrent DATE = '5/14/2021",;
DROP TABLE IF EXISTS #green_today;
-- disregard the no-interest stocks too
SELECT Symbol, ClosePrice, HighPrice, OpenPrice, Volume
, MAX(CAST(QuoteUTCDate AS DATE)) As LastDate, LAG(QuoteUTCDate, 1) OVER(PARTITION
BY Symbol ORDER BY QuoteUTCDate) AS LagQuoteDatel, LEAD(QuoteUTCDate, 1)
OVER(PARTITION BY Symbol ORDER BY QuoteUTCDate) AS LeadQuoteDatel
, LAG(QuoteUTCDate, 2) OVER(PARTITION BY Symbol ORDER BY QuoteUTCDate) AS
LagQuoteDate2
, LEAD(QuoteUTCDate, 2) OVER(PARTITION BY Symbol ORDER BY QuoteUTCDate) AS
L eadQuoteDate2
, LAG(QuoteUTCDate, 3) OVER(PARTITION BY Symbol ORDER BY QuoteUTCDate) AS
LagQuoteDate3
, LEAD(QuoteUTCDate, 3) OVER(PARTITION BY Symbol ORDER BY QuoteUTCDate) AS
LeadQuoteDate3
, LAG(QuoteUTCDate, 4) OVER(PARTITION BY Symbol ORDER BY QuoteUTCDate) AS
LagQuoteDated
, LEAD(QuoteUTCDate, 4) OVER(PARTITION BY Symbol ORDER BY QuoteUTCDate) AS
L eadQuoteDated
, LAG(QuoteUTCDate, 5) OVER(PARTITION BY Symbol ORDER BY QuoteUTCDate) AS
LagQuoteDate5
, LEAD(QuoteUTCDate, 5) OVER(PARTITION BY Symbol ORDER BY QuoteUTCDate) AS
L eadQuoteDate5
INTO #green_today
FROM dbo.HistoryQuotesDay
WHERE UPPER(Symbol) = Symbol COLLATE Latinl Genera CS AS -- some symbols are bad
GROUP BY Symbol, ClosePrice, HighPrice, OpenPrice, Volume, QuoteUTCDate
HAVING MAX(CAST(QuoteUTCDate ASDATE)) >= DATEADD(Day, -7, @testDateCurrent)

DELETE #green_today

SELECT * FROM #green_today

FROM #green_today

WHERE ClosePrice <= OpenPrice

OR ClosePrice NOT BETWEEN 2 AND 200

OR Volume < 50000

OR LastDate <> @testDateCurrent

--SELECT * FROM #green_today

--ORDER BY Symbol, LastDate;

/*

SELECT count(*)

FROM dbo.HistoryQuotesDay

WHERE ClosePrice > OpenPrice

AND ClosePrice BETWEEN 2 AND 200

AND Volume > 50000

AND UPPER(Symbol) = Symbol COLLATE Latinl_General_CS_AS -- some symbols are bad
AND Symbol ='GNCA'

%

--DECLARE @testDateCurrentl DATE = '5/14/2021";
-- pull from that group the stocks that were green the day before
DROP TABLE IF EXISTS #green _both_days;

22

SELECT d.Symbol
INTO #green_both_days
FROM dbo.HistoryQuotesDay d
INNER JOIN #green_today gt
ON d.Symbol = gt.Symbol
AND CAST(d.QuoteUTCDate AS DATE) = CAST(gt.LagQuoteDatel AS DATE)
WHERE d.ClosePrice > d.OpenPrice
AND d.ClosePrice < gt.ClosePrice
AND d.HighPrice < gt.HighPrice -- needs to break previous day high too

--SELECT * FROM #green_both_daysd
--INNER JOIN #green_today gt
-- ON d.Symbol = gt.Symbol;
DROP TABLE IF EXISTS#in_uptrend;
-- what about stocks in an uptrend
-- defined as higher than previous week
SELECT d.Symboal, gt.ClosePrice AS CurrentClose, d.ClosePrice AS LastWeekClose
INTO #in_uptrend
FROM dbo.HistoryQuotesDay d
INNER JOIN #green_today gt
ON d.Symbol = gt.Symbol
INNER JOIN #green_both_days ghd
ON d.Symbol = ghd.Symbol
WHERE CAST(d.QuoteUTCDate AS DATE) = DATEADD(Day, -14, @testDateCurrent)
AND gt.ClosePrice > d.ClosePrice

--SELECT * FROM #in_uptrend;
DROP TABLE IF EXISTS#Gains
-- lower the previous 3 days?
SELECT gt.ClosePrice, gt.Symbol
, d1.ClosePrice AS PrevDay1Close
, d2.ClosePrice AS PrevDay2Close
, d3.ClosePrice AS PrevDay3Close
, L1.ClosePrice AS PostDay1Close
, L2.ClosePrice AS PostDay2Close
, L3.ClosePrice AS PostDay3Close
, L4.ClosePrice AS PostDay4Close
, L1.ClosePrice - gt.ClosePrice AS GainForDay1
, L2.ClosePrice - gt.ClosePrice AS GainForDay2
, L3.ClosePrice - gt.ClosePrice AS GainForDay3
, L4.ClosePrice - gt.ClosePrice AS GainForDay4
INTO #Gains
FROM dbo.HistoryQuotesDay d1
INNER JOIN #green_today gt
ON d1.Symbol = gt.Symbol
AND d1.QuoteUTCDate = gt.L agQuoteDate2
INNER JOIN #green_both_days gbd
ON d1.Symbol = ghd.Symbol
INNER JOIN #in_uptrend i
ON i.Symbol = d1.Symbol
INNER JOIN dbo.HistoryQuotesDay d2
ON d2.Symbol = gt.Symbol
AND d2.QuoteUTCDate = gt.LagQuoteDate3
INNER JOIN dbo.HistoryQuotesDay d3
ON d3.Symbol = gt.Symbol
AND d3.QuoteUTCDate = gt.L agQuoteDate4

23

INNER JOIN dbo.HistoryQuotesDay L1

ON L1.Symbol = gt.Symbol

AND L 1.QuoteUTCDate = gt.LeadQuoteDatel
INNER JOIN dbo.HistoryQuotesDay L2

ON L2.Symbol = gt.Symbol

AND L2.QuoteUTCDate = gt.L eadQuoteDate2
INNER JOIN dbo.HistoryQuotesDay L3

ON L3.Symbol = gt.Symbol

AND L3.QuoteUTCDate = gt.LeadQuoteDate3
INNER JOIN dbo.HistoryQuotesDay L4

ON L4.Symbol = gt.Symbol

AND L4.QuoteUTCDate = gt.L eadQuoteDate4
WHERE d1.ClosePrice < d1.OpenPrice
AND d2.ClosePrice < d2.0penPrice
AND d3.ClosePrice < d3.0OpenPrice
SELECT SUM(GainForDayl) AS GainForDay1

, SUM(GainForDay2) AS GainForDay?2

, SUM(GainforDay3) AS GainForDay3

, SUM(GainforDay4) AS GainForDay4
FROM #Gains
SELECT * FROM #Gains

K. GoldenCross.sgl Source Code —

-- Summary Table
-- date primary key
-- symbol
--5MA
--20MA
-- closing price
-- SAMPLE
SELECT Symbol
, CAST(QuoteUTCDate As DATE) AS QuoteDate

, ClosePrice

, LAG(ClosePrice, 1) OVER(PARTITION BY Symbol ORDER BY QuoteUTCDate) AS
LagQuoteClosel

, LAG(ClosePrice, 2) OVER(PARTITION BY Symbol ORDER BY QuoteUTCDate) AS
LagQuoteClose2

, LAG(ClosePrice, 3) OVER(PARTITION BY Symbol ORDER BY QuoteUTCDate) AS
LagQuoteClose3

, LAG(ClosePrice, 4) OVER(PARTITION BY Symbol ORDER BY QuoteUTCDate) AS
LagQuoteClosed

, LAG(ClosePrice, 5) OVER(PARTITION BY Symbol ORDER BY QuoteUTCDate) AS
LagQuoteClose5
INTO #templ
FROM dbo.vHistoryQuotesDay
WHERE QuoteUTCDate > '5/07/2021'
AND Symbol ='AAPL'
-- Temp Tablefor 5 day MA
DROP TABLE IF EXISTS #Temp5MA
SELECT Symbol

, CAST(QuoteUTCDate AS DATE) AS QuoteDate
, ClosePrice

24

, LAG(ClosePrice, 1) OVER(PARTITION BY Symbol ORDER BY QuoteUTCDate) AS
LagQuoteClosel

, LAG(ClosePrice, 2) OVER(PARTITION BY Symbol ORDER BY QuoteUTCDate) AS
LagQuoteClose2

, LAG(ClosePrice, 3) OVER(PARTITION BY Symbol ORDER BY QuoteUTCDate) AS
LagQuoteClose3

, LAG(ClosePrice, 4) OVER(PARTITION BY Symbol ORDER BY QuoteUTCDate) AS
LagQuoteClosed

, LAG(ClosePrice, 5) OVER(PARTITION BY Symbol ORDER BY QuoteUTCDate) AS
LagQuoteCloseb
INTO #Temp5MA
FROM dbo.HistoryQuotesDay
WHERE QuoteUTCDate > '05/19/2021'
SELECT * FROM #Temp5MA
-- 5 Day Moving average calculation SUM
DROP TABLE IF EXISTS #Sum5DayMA
SELECT *, (ClosePrice + LagQuoteClosel + LagQuoteClose2 + LagQuoteClose3 + LagQuoteClosed) / 5
AsFiveDayMA
INTO #Sum5DayMA
FROM #Temp5MA
SELECT * FROM #Sum5DayMA
-- 20 Day Moving Average TEMP table
DROP TABLE IF EXISTS #Temp20MA
SELECT Symbol

, CAST(QuoteUTCDate AS DATE) AS QuoteDate

, ClosePrice

, LAG(ClosePrice, 1) OVER(PARTITION BY Symbol ORDER BY QuoteUTCDate) AS
LagQuoteClosel

, LAG(ClosePrice, 2) OVER(PARTITION BY Symbol ORDER BY QuoteUTCDate) AS
LagQuoteClose2

, LAG(ClosePrice, 3) OVER(PARTITION BY Symbol ORDER BY QuoteUTCDate) AS
LagQuoteClose3

, LAG(ClosePrice, 4) OVER(PARTITION BY Symbol ORDER BY QuoteUTCDate) AS
LagQuoteClosed

, LAG(ClosePrice, 5) OVER(PARTITION BY Symbol ORDER BY QuoteUTCDate) AS
LagQuoteClose5

, LAG(ClosePrice, 6) OVER(PARTITION BY Symbol ORDER BY QuoteUTCDate) AS
L agQuoteClose6

, LAG(ClosePrice, 7) OVER(PARTITION BY Symbol ORDER BY QuoteUTCDate) AS
LagQuoteClose?

, LAG(ClosePrice, 8) OVER(PARTITION BY Symbol ORDER BY QuoteUTCDate) AS
LagQuoteClose8

, LAG(ClosePrice, 9) OVER(PARTITION BY Symbol ORDER BY QuoteUTCDate) AS
LagQuoteClose9

, LAG(ClosePrice, 10) OVER(PARTITION BY Symbol ORDER BY QuoteUTCDate) AS
LagQuoteClosel0

, LAG(ClosePrice, 11) OVER(PARTITION BY Symbol ORDER BY QuoteUTCDate) AS
LagQuoteClosell

, LAG(ClosePrice, 12) OVER(PARTITION BY Symbol ORDER BY QuoteUTCDate) AS
LagQuoteClosel2

, LAG(ClosePrice, 13) OVER(PARTITION BY Symbol ORDER BY QuoteUTCDate) AS
LagQuoteClosel3

, LAG(ClosePrice, 14) OVER(PARTITION BY Symbol ORDER BY QuoteUTCDate) AS
LagQuoteClosel4

, LAG(ClosePrice, 15) OVER(PARTITION BY Symbol ORDER BY QuoteUTCDate) AS
L agQuoteClosel5

25

, LAG(ClosePrice, 16) OVER(PARTITION BY Symbol ORDER BY QuoteUTCDate) AS
LagQuoteClosel6
, LAG(ClosePrice, 17) OVER(PARTITION BY Symbol ORDER BY QuoteUTCDate) AS
LagQuoteClosel?
, LAG(ClosePrice, 18) OVER(PARTITION BY Symbol ORDER BY QuoteUTCDate) AS
LagQuoteClosel8
, LAG(ClosePrice, 19) OVER(PARTITION BY Symbol ORDER BY QuoteUTCDate) AS
LagQuoteClosel9
, LAG(ClosePrice, 20) OVER(PARTITION BY Symbol ORDER BY QuoteUTCDate) AS
LagQuoteClose20
INTO #Temp20MA
FROM dbo.HistoryQuotesDay
WHERE QuoteUTCDate > '05/19/2021'
SELECT * FROM #Temp20MA
-- 20 Day Moving average calculation
DROP TABLE IF EXISTS #Sum20DayMA
SELECT *, (ClosePrice + LagQuoteClosel + LagQuoteClose2 + LagQuoteClose3 + LagQuoteClosed +
LagQuoteCloseb +
LagQuoteCloseb + LagQuoteClose? + LagQuoteClose8 + LagQuoteClosed + LagQuoteClosel0 +
LagQuoteClosell + LagQuoteClosel2 +
LagQuoteClosel3 + LagQuoteClosel4 + LagQuoteClosel5 + LagQuoteClosel6 +
LagQuoteClosel7 + LagQuoteClosel8 + LagQuoteClosel9) / 20 AS SumDay20MA
INTO #Sum20DayM A
FROM #Temp20MA
SELECT * FROM #Sum20DayMA
/*
-- Join of the two tables
SELECT d.Symbol
, t.QuoteDate
, d.ClosePrice
, FiveDayMA
, SumDay20MA
FROM #Sum5DayMA d
INNER JOIN #Sum20DayMA t ON d.Symbol = t.Symbol
AND d.QuoteDate = t.QuoteDate
WHERE FiveDayMA < SumDay20MA -- thisis where to detect golden crossing
*/
-- 5 day isbelow 20 MA
--creating a new temp table to hold the data necessary to determine golden/death crosses
DROP TABLE IF EXISTS #SumGoldenCross
SELECT d.Symbol
, t.QuoteDate
, d.ClosePrice
, LAG(FiveDayMA, 1) OVER(PARTITION BY d.Symbol ORDER BY t.QuoteDate) AS
PrevFiveDayMA
, FiveDayMA
, LAG(SumDay20MA, 1) OVER(PARTITION BY d.Symbol ORDER BY t.QuoteDate) AS
PrevSumDay20MA
, SumDay20MA
INTO #SumGoldenCross
FROM #Sum5DayMA d
INNER JOIN #Sum20DayMA t ON d.Symbol = t.Symbol
AND d.QuoteDate = t.QuoteDate;
--Finding golden crosses/creating golden crosses temp table
DROP TABLE IF EXISTS #GoldenCrosses
SELECT *

26

INTO #GoldenCrosses

FROM #SumGoldenCross

WHERE PrevFiveDayMA < PrevSumDay20MA
AND FiveDayMA > SumDay20MA

SELECT * FROM #GoldenCrosses;

--Finding death crosses/creating death crosses temp table
DROP TABLE IF EXISTS #DeathCrosses

SELECT *

INTO #DeathCrosses

FROM #SumGoldenCross

WHERE PrevFiveDayMA > PrevSumDay20MA

AND FiveDayMA < SumDay20MA

SELECT * FROM #DeathCrosses,
--finding scenarios where a golden cross occurred before a death cross
SELECT g.Symbol
, 0.QuoteDate AS GoldenQuoteDate
--, 0.ClosePrice AS GoldenClosePrice
--, 0.PrevFiveDayMA AS GoldenPrevFiveDayMA
--, g.FiveDayMA AS GoldenFiveDayMA
--, g.PrevSumbDay20MA AS GoldenPrevSumbDay20MA
--, g.SumDay20MA AS GoldenSumbDay20M A
, d.QuoteDate AS DeathQuoteDate
--, d.ClosePrice AS DeathClosePrice
--, d.PrevFiveDayMA AS DeathPrevFiveDayMA
--, d.FiveDayMA AS DeathFiveDayMA
--, d.PrevSumDay20MA AS DeathPrevSumDay20MA
--, d.SumDay20MA AS DeathSumDay20MA
FROM #GoldenCrosses g
INNER JOIN #DeathCrosses d ON g.Symbol = d.Symbol
WHERE g.QuoteDate < d.QuoteDate
ORDER BY g.Symboal;

L. GoldenCrossUpdate.sqgl source code —

-- Summary Table
-- date primary key
-- symbol
--5MA
- 20 MA
-- closing price
-- SAMPLE
SELECT Symbol

, CAST(QuoteUTCDate AsDATE) AS QuoteDate

, ClosePrice

, LAG(ClosePrice, 1) OVER(PARTITION BY Symbol ORDER BY QuoteUTCDate) AS

LagQuoteClosel

, LAG(ClosePrice, 2) OVER(PARTITION BY Symbol ORDER BY QuoteUTCDate) AS
L agQuoteClose?

, LAG(ClosePrice, 3) OVER(PARTITION BY Symbol ORDER BY QuoteUTCDate) AS
LagQuoteClose3

, LAG(ClosePrice, 4) OVER(PARTITION BY Symbol ORDER BY QuoteUTCDate) AS
L agQuoteClosed

27

, LAG(ClosePrice, 5) OVER(PARTITION BY Symbol ORDER BY QuoteUTCDate) AS

LagQuoteCloseb
INTO #templ
FROM dbo.vHistoryQuotesDay
WHERE QuoteUTCDate > '5/07/2021'
AND Symbol ='AAPL'
-- Temp Tablefor 5 day MA
DROP TABLE IF EXISTS [5dayMA]
SELECT Symbol

, CAST(QuoteUTCDate AS DATE) AS QuoteDate

, ClosePrice

, LAG(ClosePrice, 1) OVER(PARTITION BY Symbol ORDER BY QuoteUTCDate) AS
LagQuoteClosel

, LAG(ClosePrice, 2) OVER(PARTITION BY Symbol ORDER BY QuoteUTCDate) AS
LagQuoteClose2

, LAG(ClosePrice, 3) OVER(PARTITION BY Symbol ORDER BY QuoteUTCDate) AS
LagQuoteClose3

, LAG(ClosePrice, 4) OVER(PARTITION BY Symbol ORDER BY QuoteUTCDate) AS
LagQuoteClosed

, LAG(ClosePrice, 5) OVER(PARTITION BY Symbol ORDER BY QuoteUTCDate) AS
LagQuoteClose5
INTO [5dayMA]
FROM dbo.HistoryQuotesDay
WHERE QuoteUTCDate > '05/19/2021'
SELECT * FROM [5dayMA]
-- 5 Day Moving average calculation SUM
DROP TABLE IF EXISTS [Sum5DayMA]
SELECT *, (ClosePrice + LagQuoteClosel + LagQuoteClose2 + LagQuoteClose3 + LagQuoteClosed) / 5
AsFiveDayMA
INTO [Sum5DayMA]
FROM [5DayMA]
SELECT * FROM [Sum5DayMA]
-- 20 Day Moving Average TEMP table
DROP TABLE IF EXISTS [Temp20MA]
SELECT Symbol

, CAST(QuoteUTCDate AS DATE) AS QuoteDate

, ClosePrice

, LAG(ClosePrice, 1) OVER(PARTITION BY Symbol ORDER BY QuoteUTCDate) AS
LagQuoteClosel

, LAG(ClosePrice, 2) OVER(PARTITION BY Symbol ORDER BY QuoteUTCDate) AS
LagQuoteClose2

, LAG(ClosePrice, 3) OVER(PARTITION BY Symbol ORDER BY QuoteUTCDate) AS
LagQuoteClose3

, LAG(ClosePrice, 4) OVER(PARTITION BY Symbol ORDER BY QuoteUTCDate) AS
LagQuoteClosed

, LAG(ClosePrice, 5) OVER(PARTITION BY Symbol ORDER BY QuoteUTCDate) AS
LagQuoteClose5

, LAG(ClosePrice, 6) OVER(PARTITION BY Symbol ORDER BY QuoteUTCDate) AS
L agQuoteClose6

, LAG(ClosePrice, 7) OVER(PARTITION BY Symbol ORDER BY QuoteUTCDate) AS
LagQuoteClose7

, LAG(ClosePrice, 8) OVER(PARTITION BY Symbol ORDER BY QuoteUTCDate) AS
LagQuoteClose8

, LAG(ClosePrice, 9) OVER(PARTITION BY Symbol ORDER BY QuoteUTCDate) AS
LagQuoteClose9

28

, LAG(ClosePrice, 10) OVER(PARTITION BY Symbol ORDER BY QuoteUTCDate) AS
LagQuoteClosel0
, LAG(ClosePrice, 11) OVER(PARTITION BY Symbol ORDER BY QuoteUTCDate) AS
LagQuoteClosell
, LAG(ClosePrice, 12) OVER(PARTITION BY Symbol ORDER BY QuoteUTCDate) AS
LagQuoteClosel2
, LAG(ClosePrice, 13) OVER(PARTITION BY Symbol ORDER BY QuoteUTCDate) AS
LagQuoteClosel3
, LAG(ClosePrice, 14) OVER(PARTITION BY Symbol ORDER BY QuoteUTCDate) AS
LagQuoteClosel4
, LAG(ClosePrice, 15) OVER(PARTITION BY Symbol ORDER BY QuoteUTCDate) AS
LagQuoteClosel5
, LAG(ClosePrice, 16) OVER(PARTITION BY Symbol ORDER BY QuoteUTCDate) AS
LagQuoteClosel6
, LAG(ClosePrice, 17) OVER(PARTITION BY Symbol ORDER BY QuoteUTCDate) AS
LagQuoteClosel7
, LAG(ClosePrice, 18) OVER(PARTITION BY Symbol ORDER BY QuoteUTCDate) AS
LagQuoteClosel8
, LAG(ClosePrice, 19) OVER(PARTITION BY Symbol ORDER BY QuoteUTCDate) AS
LagQuoteClosel9
, LAG(ClosePrice, 20) OVER(PARTITION BY Symbol ORDER BY QuoteUTCDate) AS
LagQuoteClose20
INTO [Temp20MA]
FROM dbo.HistoryQuotesDay
WHERE QuoteUTCDate > '05/19/2021'
SELECT * FROM [Temp20MA]
-- 20 Day Moving average calculation
DROP TABLE IF EXISTS [Sum20DayMA]
SELECT *, (ClosePrice + LagQuoteClosel + LagQuoteClose2 + LagQuoteClose3 + LagQuoteClosed +
LagQuoteCloseb +
LagQuoteCloseb + LagQuoteClose? + LagQuoteClose8 + LagQuoteClosed + LagQuoteClosel0 +
LagQuoteClosell + LagQuoteClosel2 +
LagQuoteClosel3 + LagQuoteClosel4 + LagQuoteClosel5 + LagQuoteClosel6 +
LagQuoteClosel7 + LagQuoteClosel8 + LagQuoteClosel9) / 20 AS SumDay20MA
INTO [Sum20DayMA]
FROM [Temp20MA]
SELECT * FROM [Sum20DayMA]
--creating a new table to hold the data necessary to determine golden/death crosses
DROP TABLE IF EXISTS [SumGoldenCross|
SELECT d.Symbol
, t.QuoteDate
, d.ClosePrice
, LAG(FiveDayMA, 1) OVER(PARTITION BY d.Symbol ORDER BY t.QuoteDate) AS
PrevFiveDayMA
, FiveDayMA
, LAG(SumDay20MA, 1) OVER(PARTITION BY d.Symbol ORDER BY t.QuoteDate) AS
PrevSumDay20MA
, SumDay20MA
INTO [SumGoldenCross)
FROM [Sum5DayMA] d
INNER JOIN [Sum20DayMA] t ON d.Symbol = t.Symbol
AND d.QuoteDate = t.QuoteDate;
--Finding golden crosses/creating golden crosses temp table
DROP TABLE IF EXISTS [GoldenCrosses]
SELECT *
INTO [GoldenCrosses]

29

FROM [SumGoldenCross]
WHERE PrevFiveDayMA < PrevSumDay20MA
AND FiveDayMA > SumDay20MA

SELECT * FROM [GoldenCrosses)|

WHERE Symbol ="'AA'

UNION SELECT * FROM DeathCrosses
WHERE Symbol ="'AA'

ORDER BY QuoteDate

SELECT * FROM DeathCrosses

WHERE Symbol ='AA'

--Finding death crosses/creating death crosses temp table
DROP TABLE IF EXISTS [DeathCrosses]
SELECT *

INTO [DeathCrosses]

FROM [SumGoldenCross]

WHERE PrevFiveDayMA > PrevSumDay20MA
AND FiveDayMA < SumDay20MA

SELECT * FROM [DeathCrosses]|
-- when golden cross occurs before death cross, ORDER BY their dates
SELECT g.Symbol
, 0.QuoteDate AS GoldenQuoteDate
, d.QuoteDate AS DeathQuoteDate
FROM [GoldenCrosses]| g
INNER JOIN [DeathCrosses] d ON g.Symbol = d.Symbol
WHERE g.QuoteDate < d.QuoteDate
ORDER BY g.QuoteDate , d.QuoteDate , g.Symbol
'WITH AllTypes as (SELECT Symbol, QuoteDate as GoldenQuoteDate , 'Gold' as DateType
FROM GoldenCrosses
UNION
SELECT Symbol, QuoteDate as DeathQuoteDate , 'Death’ as DateType
FROM DeathCrosses)
SELECT * FROM AllTypes
ORDER BY Symbol, DateType, GoldenQuoteDate
-- SUM of overall profit
SELECT SUM(h1.ClosePrice - h2.ClosePrice) as Profit --switched h1l and h2 to get + profit value
--, h1.HighPrice
--, h1.ClosePrice
FROM [GoldenCrosses] g
INNER JOIN [DeathCrosses] d ON g.Symbol = d.Symbol
INNER JOIN HistoryQuotesDay hl
ON CAST(g.QuoteDate as date) = CAST (h1.QuoteUTCDate as date) AND g.Symbol = h1.Symbol
INNER JOIN HistoryQuotesDay h2
ON CAST(d.QuoteDate as date) = CAST(h2.QuoteUTCDate as date) AND d.Symbol = h2.Symbol
--WHERE h1.QuoteUTCDate > DATEADD(Day, -10, h1.QuoteUTCDate)

-- 5226.0994

--- switch where dc is before gc to test

'WITH TestDates as (SELECT g.Symbol -- common table expressions
, DATEADD(Day, 14, d.QuoteDate) as Next14Days
, d.QuoteDate AS DeathQuoteDate

, 0.QuoteDate AS GoldenQuoteDate

FROM [GoldenCrosses] g
INNER JOIN [DeathCrosses] d ON g.Symbol = d.Symbol
WHERE d.QuoteDate < g.QuoteDate)
--ORDER BY g.QuoteDate , d.QuoteDate , g.Symbol

30

SELECT td.Symbol
, MAX(h.HighPrice) as MaxHighPrice -- aggregate function
, FORMAT (DeathQuoteDate, 'MM-dd-yyyy") as DeathQuoteDate
, Next1l4Days
FROM TestDates as td
INNER JOIN [HistoryQuotesDay] h ON td.Symbol = h.Symbol
WHERE h.QuoteUTCDate between td.Next14Days AND h.QuoteUTCDate
GROUP BY td.Symbol, Nextl4Days, DeathQuoteDate, GoldenQuoteDate
ORDER BY Symbol asc
-- test, and it works
SELECT * FROM [HistoryQuotesDay]
WHERE Symbol ="'AAIC'
AND QuoteUTCDate between '6/4/2021' and '6/18/2021' -- test if thisisjune 30th, to match dc
before gc
SELECT * FROM DailySummary
WHERE Symbol = 'TEL'
AND SummaryDate > '6/17/2021'
-- seeif date is higher than previous 10 days
-- have date and trend and join with gc and dc
---tests from daily highs-- x + 10
-- For 13: Stocks that are up (13-week high after 13-week low)
DROP TABLE IF EXISTS [MaxValuel3]
SELECT Symbol
, Max (HighPrice) as MaxValuel3
INTO [MaxVauel3]
FROM dbo.HistoryQuotesDay
WHERE QuoteUTCDate > DATEADD(Month, -3, QuoteUTCDate)
GROUP BY Symbol
GO
-- look at the dates
-- death: where red goes below the blueit is the short trend
-- next steps: document what went wrong, see dates where you get profit and how far between it is
-- Query to find profit of dc before gc
SELECT g.Symbol
, d.QuoteDate AS DeathQuoteDate
, 0.QuoteDate AS GoldenQuoteDate
, h1.HighPrice
, h1.ClosePrice
, . Trend10Day
, SAvgVolumelO
--, LAG(g.QuoteDate, 10) OVER(PARTITION BY g.Symbol ORDER BY h1.QuoteUTCDate) -- trying
to integrate -10 days
, SUM(h1.ClosePrice - h2.ClosePrice) as Profit
FROM [GoldenCrosses]| g
INNER JOIN [DeathCrosses] d ON g.Symbol = d.Symbol
INNER JOIN HistoryQuotesDay h1
ON CAST(g.QuoteDate as date) = CAST(h1.QuoteUTCDate as date)
AND g.Symbol = h1.Symbol
INNER JOIN HistoryQuotesDay h2
ON CAST(d.QuoteDate as date) = CAST(h2.QuoteUTCDate as date)
AND d.Symbol = h2.Symbol
INNER JOIN DailySummary s
ON CAST (s.SummaryDate as date) = CAST(g.QuoteDate as date)
AND s.Symbol = g.Symbol
--WHERE h1.QuoteUTCDate > DATEADD(Day, -10, h1.QuoteUTCDate)
AND d.QuoteDate < g.QuoteDate

31

AND h1.ClosePrice > 50
GROUP BY g.Symbol, g.QuoteDate, d.QuoteDate, h1.ClosePrice, h1.HighPrice, s.Trend10Day,
s.AvgVolumelO
ORDER BY Symbol, g.QuoteDate, d.QuoteDate
SELECT * FROM DailySummary
--, LAG(ClosePrice, 1) OVER(PARTITION BY Symbol ORDER BY QuoteUTCDate) AS
LagQuoteClosel
--getting average profit based on Trend10Day
SELECT --DISTINCT g.Quotedate, g.Symbol
s.Trend10Day
--, LAG(g.QuoteDate, 1) OVER(PARTITION BY g.Symbol ORDER BY g.Symbol, g.QuoteDate)
AS PreviousQuoteDate
, SUM(h1.ClosePrice - h2.ClosePrice)/SUM (h2.ClosePrice) * 100 as Profit
--, AVG(h2.ClosePrice - h1.ClosePrice) as Profit gc before dc is negative profit
FROM [GoldenCrosses] g
INNER JOIN [DeathCrosses] d ON g.Symbol = d.Symbol
INNER JOIN HistoryQuotesDay hl
ON CAST(g.QuoteDate as date) = CAST (h1.QuoteUTCDate as date)
AND g.Symbol = h1.Symbol
INNER JOIN HistoryQuotesDay h2
ON CAST(d.QuoteDate as date) = CAST(h2.QuoteUTCDate as date)
AND d.Symbol = h2.Symbol
INNER JOIN DailySummary s
ON CAST(s.SummaryDate as date) = CAST(g.QuoteDate as date)
AND s.Symbol = g.Symbol
WHERE h1.QuoteUTCDate > DATEADD(Day, -10, h1.QuoteUTCDate)
AND d.QuoteDate < g.QuoteDate
AND h1.ClosePrice < 50 --stocks less than 50
GROUP BY s.Trend10Day --, g.QuoteDate, g.Symbol
---when close priceis > $50
-- D 2.349544
-- U 3.869387
---when close priceis < $50
-- D 0.342190
-- U 0.760847
--divide the sum of the profit by the sum of the close price times 100 to get percentages

sWITH NearestDates AS (
SELECT
d.Symbol
, d.QuoteDate As DeathDate
, MIN(g.QuoteDate) As NearestGoldenDate
FROM [GoldenCrosses] g
INNER JOIN [DeathCrosses] d ON g.Symbol = d.Symbol
INNER JOIN HistoryQuotesDay hl
ON CAST(g.QuoteDate as date) = CAST(hl.QuoteUTCDate as date) -- golden cross
value
AND g.Symbol = hl.Symbol
INNER JOIN HistoryQuotesDay h2
ON CAST(d.QuoteDate as date) = CAST(h2.QuoteUTCDate as date) -- death cross
value
AND d.Symbol = h2.Symbol
INNER JOIN DailySummary s
ON CAST(s.SummaryDate as date) = CAST(g.QuoteDate as date)
AND s.Symbol = g.Symbol

32

WHERE hl.QuoteUTCDate > DATEADD(month, -3, hl.QuoteUTCDate)

AND d.QuoteDate < g.QuoteDate -- death cross before golden
cross

AND hl.ClosePrice < 50 --stocks less than 50
GROUP BY
d.Symbol
, d.QuoteDate

)

SELECT
nd.Symbol,
h2.ClosePrice As DeathPrice,
hl.ClosePrice AS GoldenPrice,
h2.ClosePrice - hl.ClosePrice As Profit
, nd.DeathDate
, hd.NearestGoldenDate
FROM
NearestDates nd
INNER JOIN HistoryQuotesDay hl
ON CAST(nd.NearestGoldenDate AS date) = CAST(hl.QuoteUTCDate as date) -- golden
cross value
AND nd.Symbol = hl.Symbol
INNER JOIN HistoryQuotesDay h2
ON CAST(nd.DeathDate as date) = CAST(h2.QuoteUTCDate as date) -- death cross
value
AND nd.Symbol = h2.Symbol
WHERE h1.QuoteUTCDate > DATEADD(month, -3, hl.QuoteUTCDate)
AND hl.ClosePrice < 50 --stocks less than 50
order by nd.Symbol, nd.DeathDate

sWITH NearestDates AS (
SELECT
d.Symbol
, d.QuoteDate As DeathDate
, MIN(g.QuoteDate) As NearestGoldenDate
FROM [GoldenCrosses] g
INNER JOIN [DeathCrosses] d ON g.Symbol = d.Symbol
INNER JOIN HistoryQuotesDay hl
ON CAST(g.QuoteDate as date) = CAST(hl.QuoteUTCDate as date) -- golden cross
value
AND g.Symbol = hl.Symbol
INNER JOIN HistoryQuotesDay h2
ON CAST(d.QuoteDate as date) = CAST(h2.QuoteUTCDate as date) -- death cross
value
AND d.Symbol = h2.Symbol
INNER JOIN DailySummary s
ON CAST(s.SummaryDate as date) = CAST(g.QuoteDate as date)
AND s.Symbol = g.Symbol
WHERE h1.QuoteUTCDate > DATEADD(month, -3, hl.QuoteUTCDate)

AND d.QuoteDate < g.QuoteDate -- death cross before
golden cross

AND hl.ClosePrice < 50 --stocks less than 50
GROUP BY
d.Symbol

33

, d.QuoteDate
)

SELECT
SUM(h1.ClosePrice - h2.ClosePrice)/SUM(h2.ClosePrice) * 100 as Profit
FROM
NearestDates nd
INNER JOIN HistoryQuotesDay hl
ON CAST(nd.NearestGoldenDate AS date) = CAST(hl.QuoteUTCDate as date) -- golden
cross value
AND nd.Symbol = hl.Symbol
INNER JOIN HistoryQuotesDay h2
ON CAST(nd.DeathDate as date) = CAST(h2.QuoteUTCDate as date) -- death cross
value
AND nd.Symbol = h2.Symbol
WHERE h1.QuoteUTCDate > DATEADD(month, -3, hl.QuoteUTCDate)
AND hl.ClosePrice < 50 --stocks less than 50

		Audra Butkus <abutkus@nnu.edu>, Barry Myers <blmyers@nnu.edu>, Kevin McCarty <kmccarty@nnu.edu>
	2021-12-11T02:40:37+0000
	Barry Myers: 43°33′48″N 116°35′56″W (35.0 m), Kevin McCarty: 37°20′7″N 121°53′6″W (658.0 m)
	Certify the signatures of Audra Butkus <abutkus@nnu.edu>, Barry Myers <blmyers@nnu.edu>, Kevin McCarty <kmccarty@nnu.edu>

