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ABSTRACT 
 
 
 
 
 
 
 
 
 
Android Fruit Harvest Helper Apple Detection App Development with React Native. 

DUNCAN, BRANDON (Department of Mathematics and Computer Science), BULANON,   

DUKE (Department of Engineering and Physics), HAMILTON, DALE (Department of 

Mathematics and Computer Science). 

The Android Fruit Harvest Helper is an innovative application developed using React Native, 

aimed at assisting farmers in estimating fruit yields, particularly in apple orchards. This project 

bridges the gap between iOS and Android platforms by recreating an existing iOS app for 

blossom detection in a cross-platform environment. The app's intuitive user interface (UI), 

designed with farmers in mind, simplifies the process of estimating fruit yields by providing a 

frictionless experience for image selection and processing. The Fruit Harvest Helper’s UI 

features two boxes for the selected and processed image, along with a button enabling users to 

select or take a photo. For the backend, the app employs a color-based feature extraction machine 

learning algorithm, implemented in OpenCV C++, to detect apples in images of apple trees. 

Results show a Mean Absolute Percentage Error (MAPE) of 8.52% in apple detection when 

evaluating pictures from both sides of an apple tree. A correlation coefficient of 0.6 between 

detected and actual apples was found as well. While the app has promising functionality, 

opportunities for improvement exist, including the development of an object-based machine 

learning apple detection algorithm and methods to detect various types of fruits. Fruit Harvest 

Helper represents a significant step towards precision agriculture, nearing real-world utility for 

farmers in yield monitoring and farm management. 
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Introduction 

As the population increases, farmers will have to collectively meet the world's 

increasing demands for food. To produce more food and keep up with their competitors, 

farmers must use precision agriculture to adapt quickly. Precision agriculture refers to 

using any technology or analysis tool to optimize a current farming practice. According to 

a study conducted in Pakistan comparing cotton farms that adopted precision agriculture 

technologies with those that did not, the precision agriculture users experienced up to a 

22% higher crop yield and 27% higher profits than non-adopters (Ahmad et al. 2022). 

While this study was only for cotton farms, these findings suggest that precision 

agriculture can help farmers, making their farms significantly more sustainable. If 

farmers want to outperform their competitors and achieve agricultural success, they will 

have to start utilizing various kinds of precision agriculture tools. 

A current task in farming that still needs to be simplified by technology is fruit 

yield estimation. The process of fruit yield estimation is tedious and time-consuming for 

farmers, requiring them to count all of the fruits on a tree manually, repeat this task for a 

group of trees, find the average number of fruits on this subset of trees, and finally apply 

the average to the whole orchard to get a fruit yield estimation (Marini 2024). Once a 

fruit yield estimation is obtained, farmers use this value to determine how many laborers 

they need to hire for fruit picking. Thus, the estimation needs to be accurate. In these 

times, due to the increasing amount of crops farms produce, there is a shortage of 

laborers, making hiring the correct number of fruit pickers a problematic task. This is 

why a fruit yield estimation is essential, as it tells farmers at least two weeks before the 

harvesting season how many laborers they will need to find and hire. Using technology to 



 

2 
 

come up with an accurate estimation would make finding the fruit yield for an orchard 

quick and easy. 

As a solution to the task of estimating fruit yield, Dr.Bulanon, the agricultural 

engineering professor at Northwest Nazarene University (NNU), decided that a mobile 

application could be a practical precision agriculture technology. Since just about 

everyone has a smartphone, a downloadable mobile application available to the public 

would be a convenient way to get an estimation tool into the hands of farmers. With a 

mobile application, the process of counting the fruits on a tree would be automated. 

Farmers would be able to open the app and take a picture from either one or both sides of 

a fruit tree, though there may be inconsistent lighting when taking pictures from both 

sides. The application would process the image, providing the farmer with a quantitative 

estimate for the fruit on that tree. They could then repeat this process for a subset of fruit 

trees within the orchard. By finding the mean fruit yield for these trees, they could then 

use this mean to come up with a fruit yield estimation for their entire orchard. While fruit 

yield estimation mobile applications for kiwis and citrus already exist, no mobile 

application to aid in orchards with apples has been made, which is what originally caused 

Dr.Bulanon to research this topic (Zhou et al. 2020; Gong et al. 2013). 

Initially, Dr.Bulanon assigned an NNU Robotics Vision Lab research team to 

develop an iOS mobile application that helped farmers come up with an apple yield 

estimation. This former research team created the iOS app with Swift and OpenCV C++ 

to help estimate fruit yield.  OpenCV is an Open Source Computer Vision library for 

image and video analysis (Culjak et al. 2012). The mobile application tool used image 

processing to detect blossoms on an image of a blossoming apple tree, displaying the 



 

3 
 

number of blossoms detected to the farmer. For this approach to help with coming up 

with a fruit yield, a correlation also had to be found by these researchers, providing a 

relationship between the number of blossoms and the number of apples on Pink Lady 

apple trees from Symms Furit Ranch Apple Orchard (Braun 2018). Although this 

application saw a lot of promise as the blossom detection approach would provide 

farmers with a fruit yield prediction before harvesting season, the blossom detection 

algorithm still needed improvements to spot blossoms with a high enough accuracy for 

this method to be viable in orchards (Bulanon 2021).  

           Considering this, Dr.Bulanon thought it would be best to get an apple detection 

approach working first, which is less complex than the blossom detection task. Creating 

and implementing an apple detection algorithm into a mobile application was one of the 

goals of this project. The primary goal of this project, also decided by Dr.Bulanon, was to 

make an Android mobile app and an iOS app to reach and help a wider audience of 

farmers (Ortega et al. 2015). View Figure 1 to see the Android mobile application being 

used to capture an image of an apple tree. The React Native framework was used to 

develop this cross-platform app for both iOS and Android. While there was already an 

iOS app developed by researchers in the past, React Native allows for the simultaneous 

building of the front end of iOS and Android apps, which enables the creation of both 

platforms instead of just the Android platform. In other words, React Native made it 

logical to recreate the iOS app since this framework would put both the iOS and Android 

apps into the same codebase or program without putting in too much extra effort. Having 

both apps in one codebase would make it easier for future developers to maintain the 

code. 
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Given that the existing blossom detection app's user interface (UI) worked great, 

the idea was to remake this UI for the React Native iOS and Android apps. However, the 

back end for the iOS and Android apps had to be set up independently since React Native 

only allows simultaneous front-end development. Finally, once everything was set up and 

the iOS and Android platforms were ready for an image-processing algorithm that detects 

Pink Lady apples, an algorithm was created, tested, and implemented into the app.  

 

 

Figure 1: The Fruit Harvest Helper Android mobile app being used to capture an 

image of an apple tree of the Pink Lady variety. 

 

Methods 

Data Collection 

 Since a requirement of this project was to create an apple detection algorithm and 

integrate it into the mobile application, data had to be collected before the development 
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of the algorithm began. The algorithm’s purpose would be to detect Pink Lady apples in 

images of apple trees. This meant that images of apple trees had to be taken for the 

algorithm to use. When the apples were ripe enough, in October of 2023, pictures were 

taken of 40 selected apple trees in Symm’s Fruit Ranch Apple Orchard, which is near 

Marsing, Idaho. These were the trees that NNU’s Robotics Vision Lab research team was 

permitted to use. It should also be mentioned that the number of apples on each tree was 

also manually counted. The researchers used an Android S7 tablet to capture images of 

these apple trees from the west-facing and east-facing sides, providing information on as 

many of the trees as possible. Unfortunately, one of the trees fell over, and the researchers 

could not get pictures of 5 other apple trees from the west-facing side since the team used 

those trees for harvesting apples with a robot, which would have skewed the data. Given 

these factors, the images collected consisted of 39 east-facing and 34 west-facing images. 

 

React Native iOS and Android UI 

 When designing an application with model driven mobile development, 

developers should consider two things: the front end and the back end. When the user 

interface (UI) is being designed, it should be well thought out to meet the user's needs 

and ensure a positive experience (Brambilla et al. 2014). When creating a mobile 

application for farmers, a UI that satisfies their needs would likely focus on simplicity 

since they would not want unnecessary clutter or extra features. Due to this, it was settled 

that a straightforward UI should be made for the Fruit Harvest Helper, keeping the layout 

the same as the previous iOS front end created with Swift. 
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           Beginning the development of the new mobile application for the iOS and Android 

platforms, the React Native framework was used along with JavaScript. As mentioned 

earlier, concurrently building out the front ends for both apps was efficient. The only 

difference between iOS and Android was setting the camera and photo library 

permissions. The UI for these applications consisted of four main components that were 

recreated from the existing iOS app. The following components and their use can be 

visualized below in Figures 2 , 3, and 4: 

• A display for the original image. 

• A display for the processed image. 

• The number of apples detected by the algorithm. 

• A button to choose an image to process. 
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Figures 2 - 4: The leftmost image shows the display of the Fruit Harvest Helper mobile 

app with the four main components clearly visible. In the middle image, the pop-up is 

shown. The rightmost image shows the app after an apple tree image is processed. 

 

The original image and processed image displays were vertically aligned to take up most 

of the space a mobile device offers. Farmers needed to see these images to validate their 

image selection and the app's functionality. The number of apples detected by the 

algorithm was the most crucial piece of the UI, giving farmers helpful information that 

could be used in calculating an apple yield estimate. As for the button, once clicked, an 

easy-to-use sliding panel popped up that gave them the choice of selecting an image from 

their library, capturing it, or canceling out of the pop-up panel. Upon choosing an image 

for processing, the image would be sent to the back end for apple detection. Then, the UI 

was updated to display the original image, the processed image, and the number of 

detected apples. 

 

Setting Up Android Back End 

 React Native allows developers to create the front ends of iOS and Android apps 

together but cannot handle more complicated tasks like image processing. When using 

React Native, some aspects of the back end for the iOS and Android applications must be 

created separately since these platforms are most compatible with specific languages. 

Josh Nelson developed the iOS back end that used C++ and, therefore, will not be 

discussed. As for the Android back end, its most compatible language was Java, but it 

also included using Java Native Interface (JNI) and C++ code. As pointed out by book 



 

8 
 

about JNI, calling C++ methods from within Java programs is exactly what JNI makes 

possible (Wang 1970). The back end had to use JNI and C++ because the apple detection 

algorithm was going to be developed in C++. While the algorithm could have been 

translated to Java, having an algorithm in two different languages would create problems. 

These problems include issues with algorithm maintenance, trying to produce identical 

results in both languages, and undergoing bad programming practices. Although the 

following setup may seem convoluted, this is why communication between Java and C++ 

was added.  

           For the Android back end, an Android native module was implemented and 

configured, which allows for communication between JavaScript on the front end and 

Java code on the back end. A communication channel between Java and C++ was also 

necessary so that the Android back end could utilize the Apple detection algorithm. 

Fortunately, getting Java code to interact with C++ is what JNI was created for. So, a JNI 

function was created in the C++ file with the algorithm, and some Java was written to 

ensure Java could recognize and use the C++ code to process the image. Once this was 

done, the build settings needed to be modified to account for the Android native module 

and JNI. Now that everything was communicating, an image of an apple tree a farmer 

selected for processing could get from JavaScript to C++ and back but could not be 

processed yet. The algorithm still had to be implemented into the C++ file. Since the 

algorithm used OpenCV, a popular image processing library, this was downloaded and 

integrated into the app by modifying the build settings so Android devices could use it. At 

this point, the apple detection algorithm with OpenCV C++ was added to the application, 

successfully detecting apples in images of Pink Lady apple trees. 
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The Apple detection algorithm 

 The Pink Lady apple detection algorithm created for the Fruit Harvest Helper 

utilized a color ratio-based image segmentation algorithm to detect apple clusters. 

Dr.Bulanon first created this algorithm in MatLab in order to generate the color-ratio 

based equations that were the algorithm’s core. MatLab is a high-performance 

programming language for technical computing that is primarily math-based (The Math 

Works, Inc. 1997). Next, this MatLab algorithm was translated into OpenCV C++ to be 

compatible with the mobile application. This conversion process was complicated since 

MatLab code has much more concise tools built into it to handle certain operations. Thus, 

more code had to be written in OpenCV, essentially building around the color ratio-based 

equations. 

           The image segmentation algorithm followed a series of steps to detect apple 

clusters in images. First, some preprocessing needed to be done; this began when the 

original image that was captured or chosen by a farmer was copied to ensure that it was 

not altered in any way. It is essential to address that OpenCV stores images as a multi-

dimensional matrix of pixels, providing one dimension for each of the rows and columns 

of pixels and the color channels. Commonly, images are stored in the red, green, blue 

(RGB) format. However, OpenCV stores an image’s color channels in the blue, green, red 

(BGR) format. The next step of the algorithm splits the input image into three different 

color channels, BGR. Splitting the image into its color channels allowed each color 

channel to be evaluated independently, providing more information for image processing. 

Once the image was divided, each color channel and the copied image were converted to 

grayscale. The color intensity of each of these grayscale color channels was then 



 

10 
 

compared to the intensity of the entire grayscale image, concluding the preprocessing 

phase of the algorithm. These color ratios would be weights in the color ratio-based apple 

detection equations.  

           After this, the apple detection equations with the weighted color ratios were used 

to classify each pixel as an apple or non-apple pixel. Each of the pixels of the image was 

iterated one at a time to do this, applying the color ratio-based equations to a given pixel 

and classifying it as an apple pixel if it had significantly more red than blue and green in 

it. After the pixels of the image were classified, a binary image was left out. A binary 

image is an image that contains only two colors, usually black and white, where black 

indicates negative and white indicates positive when referring to the presence of a 

feature. In this case, white pixels represented apples, and black pixels represented 

anything that was not an apple. However, there was a lot of noise in this binary image 

that needed to be reduced through post-processing to improve the classification results. 

First, the blobs of white pixels or contours considered by the algorithm to be apple 

clusters were analyzed, and the contours that fell under the minimum contour size were 

deleted. Deleting these contours was useful since most apples are above a specific size, 

meaning this mainly eliminated apple clusters that were false positives or falsely detected 

as apples. 

Furthermore, a morphological opening operation that used a structuring element 

was performed on the binary image. According to “Digital Image Processing”, a 

morphological opening is a common image processing technique that works by 

performing an erosion operation on a region followed by a dilation operation on that 

result. Erosion and dilation refer to shrinking and expanding of a region or cluster of 
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pixels. Morphological openings are often called a filtration operation as they filter out 

small white regions surrounding identified clusters (apple clusters), smooth the edges of 

clusters, and remove noise (Gonzalez and Woods 2007). Finally, the remaining contours 

on the binary image better represented actual apple clusters, so these contours could then 

be drawn onto the colored version of the copied apple tree image. The significant apple 

clusters, which were the clusters of pixels above a certain size threshold, were drawn onto 

the image as green bounding boxes. Highlighting these clusters with green bounding 

boxes helped indicate which regions were identified as apple clusters for visualization 

purposes. The processed image was then returned for display. 

 

Results 

Testing Method 

 Testing the apple detection algorithm involved finding two values for the apple 

tree of interest in the dataset of images: the number of apples manually spotted in the 

image and the number of apples detected by the algorithm. Considering that only the 

apple tree is of interest, none of the surrounding trees or other aspects of the environment 

were looked at since the scope of this research was only to create a Pink Lady apple 

detection algorithm rather than an algorithm that could isolate apple trees. A line was 

drawn using Microsoft Paint to delineate the tree of interest. This program also drew 

circles around apples when spotting the actual and detected apples on each tree of 

interest. Counting these two values for each tree of interest could have been better. 

However, considerable effort was put into ensuring the results accurately represented the 

algorithm's capabilities. When analyzing the trees of interest in the processed images, it 
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was assumed that the algorithm detected all apples within the green bounding boxes. 

While these green bounding boxes detected apple clusters, given the algorithm's ability to 

detect hard-to-detect apples such as ones covered by shadows, it seemed reasonable to 

provide the algorithm with this benefit of the doubt. For transparency, an example of the 

process conducted on both an original and processed image is shown in Figures 5 and 6. 

 

 

Figures 5 and 6: The process used to evaluate the image segmentation algorithm is 

displayed. Microsoft Paint was used to delineate the trees of interest in the dataset. 

 

After these values were found for the entire dataset of images, a metric could be 

calculated to evaluate the algorithm’s success in apple detection. A correlation could also 

be derived using the detected apple values and the actual number of apples physically 

counted by the researchers. 
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Findings 

 The metric used to evaluate the Pink Lady apple detection algorithm was the 

Mean Absolute Percentage Error (MAPE). While the MAPE is usually used to evaluate 

regression models not tasks like apple detection, it still allows for the assessment of how 

well the algorithm detected apples. Addressed in an article discussing the use of MAPE in 

economic forecasting, MAPE penalizes both underprediction and overprediction relative 

to the true outcome, which in this case refers to the actual number of apples on the tree of 

interest (McKenzie 2011). Three MAPE values were calculated in total: one for the east, 

one for the west, and both photos combined. Interestingly, the lowest error was found on 

the combined image dataset, yielding an error of 8.52%. This result indicated that having 

a farmer capture images of a Pink Lady apple tree from both sides and combining the 

detected number of apples, not apple clusters, would give them the best results with this 

algorithm.  

           Given that taking images from both sides of the apple trees was the best approach, 

it is worth discussing the correlation between the detected number of apples on both sides 

and the physical apple count on each tree. When finding a correlation, the Pearson 

correlation coefficient was used, which measures how strong the linear relationship 

between two variables is (Sedgwick 2012). The Pearson correlation coefficient for this 

relationship was determined to be 0.6, suggesting a moderately strong correlation 

between detected and actual apples when using images from both sides. Figure 7 contains 

a graph of this relationship. A null hypothesis test was also conducted, which is a 

statistical method of providing evidence for an effect (Pernet 2016). This null hypothesis 
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resulted in a p-value of 0.000197, which proves that the correlation found is statistically 

significant and likely not an accident. 

 

 

Figure 7: A relationship between the detected apples on the trees of interest and the 

apples physically on the trees is illustrated. 

 

Discussion 

 In testing the apple detection algorithm, it was found that the detection algorithm 

has promise as the MAPE was low and a moderately strong correlation existed. However, 

the color ratio-based image segmentation algorithm had many limitations which need to 

be noted. The most obvious of these is that the algorithm cannot detect individual apples 

and can only detect apple clusters since the algorithm uses a less advanced color-based 

approach. An object-based detection algorithm could be used to detect individual Pink 

Lady apples. Another drawback of the color ratio-based algorithm was that it detected a 

lot of false positives, classifying orange tape, sunlight, dark brown leaves, and even a red 

car as apple clusters. While the algorithm was fine-tuned, these issues remained and are 
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once again attributed to the limitations of color-based approaches. However, this could be 

improved without the use of object detection. On the other hand, the algorithm detected 

Pink Lady apples well. The algorithm spotted most of the Pink Lady apples, except some 

that were green or too small since they were hiding in the leaves.  

           As for the Fruit Harvest Helper mobile application, the development was primarily 

successful. A completed iOS and Android app was created due to this project with a 

"farmer-friendly" front end and a back end that allowed for an image of a Pink Lady 

apple tree to be processed with an OpenCV C++ apple detection algorithm. However, 

currently there is no way to isolate apple trees, which is an issue since they often overlap 

with neighboring trees and form rows resembling large hedges like in Symm’s Fruit 

Ranch Apple Orchard. This makes it difficult for farmers to consistently detect all apples 

that belong exclusively to a tree of interest. While methods can be created to creatively 

isolate apple trees, given the current state of the Fruit Harvest Helper application, farmers 

still need to wait before they can use it to easily obtain a fruit yield estimation. 

 

Future Work 

 The main focus in the future should be to improve the Pink Lady apple detection 

approach to make the method usable for farmers in a real orchard. Once the Fruit Harvest 

Helper mobile application is good enough to assist farmers with estimating a fruit yield, it 

could be published in both the Apple Store and the Google Play Store for them to 

download and use for free. Along with improving the detection of Pink Lady apples, the 

challenge of blossom detection could be pursued once again. Accurately detecting apple 

blossoms would give farmers a fruit yield prediction earlier in the year before harvesting 
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season, which would be valuable. Since the user interface already exists and the back end 

for both the iOS and Android devices is already set up, new algorithms could easily be 

added to the app. Considering this, future researchers or computer science students who 

decide to continue with this project would add detection algorithms for several types of 

fruits, such as peaches. 
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